-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG2 Min Read
Efficient Power Conversion Corporation (EPC) announced the launch of the EPC91104, a high-performance 3-phase BLDC motor drive inverter reference design. This innovative design is ideal for powering compact, precision motors in humanoid robots, such as those used for wrist, finger, and toe movements.
The EPC91104 evaluation board uses the EPC23104 ePower™ Stage IC, offering a maximum RDS(on) of 11 mΩ and supporting DC bus voltages up to 80 V. The design supports up to 14 Apk steady-state and 20 Apk pulsed current, ensuring reliable performance for humanoid robot applications that require fine motor control and precision.
Key Features of the EPC91104
- Wide Voltage Range: Operates between 14 V and 80 V, accommodating a variety of battery systems
- Compact Design: Suitable for space-constrained robotics
- Advanced Protection: Includes overcurrent and input undervoltage protection, ensuring reliability in demanding applications
- Optimized Efficiency: Low-distortion switching reduces torque ripple and motor noise
Humanoid robots demand motors with precision and compactness, and the EPC91104 is specifically designed to meet those needs for applications like small joint actuation,
said Alex Lidow, CEO of EPCFor higher-current requirements, such as elbow and knee motors in humanoid robots, EPC offers the EPC9176 board in the same family. With enhanced current capacity, the EPC9176 complements the EPC91104 to cover a full range of motor drive applications in humanoid robotics.
The EPC91104 is compatible with controller boards from leading manufacturers, including Microchip, Texas Instruments, STMicroelectronics, and Renesas, offering engineers flexibility in development. It is equipped with comprehensive sensing and protection features, ensuring rapid prototyping and testing.
Original – Efficient Power Conversion
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG3 Min Read
SemiQ Inc. announced a family of 1700 V SiC MOSFETs designed to meet the needs of medium-voltage high power conversion applications, such as photovoltaic and wind inverters, energy storage, EV and road-side charging, uninterruptable power supplies, and induction heating/welding.
The high-speed QSiC™ 1700 V switching planar D-MOSFETs enable more compact system designs at large scale, with higher power densities and lower system costs. They feature a reliable body diode, capable of operation at up to 175oC, with all components tested to beyond 1900 V, and UIL avalanche tested to 600 mJ.
The QSiC 1700 V devices are available in both a bare die form (GP2T030A170X), and as a 4-pin TO-247-4L-packaged discrete (GP2T030A170H) with drain, source, driver source and gate pins. Both are also available in an AEC-Q101 automotive qualified version (AS2T030A170X and AS2T030A170H).
The MOSFETs deliver low switching and conduction losses, low capacitance and feature a rugged gate oxide for long-term reliability, with 100 percent of components undergoing wafer-level burn in (WLBI) to screen out potentially weak oxide devices.
SemiQ has also announced a series of three modules as part of the family to simplify system design, this includes a standard-footprint 62 mm half-bridge module housed in an S3 package with an AIN insolated baseplate, as well as two SOT-227 packaged power modules.
The QSiC 1700 V series’ bare die MOSFET comes with an aluminum (Al) top side and nickel/silver (Ni/Ag) bottom side. Both it and the TO-247-4L packaged device have a power dissipation of 564 W, with a continuous drain current of 83 A (at 25oC, 61A at 100oC) and a pulsed drain current of 250 A (at 25oC). They also feature a gate threshold voltage of 2.7 V (at 25oC, 2.1 V at 125oC), an RDSON of 31 mΩ (at 25oC, 57 mΩ at 125oC), a low (10n A) gate source leakage current and a fast reverse recovery time (tRR) of 17 ns. The TO-247-4L package has a junction to case thermal resistance of 0.27oC per watt.
The two 4-pin power modules are housed in a 38.0 x 24.8 x 11.7 mm SOT-227 design and deliver an increased power dissipation of 652 W with an increased continuous drain current of 123 A (at 25oC – GCMX015A170S1E1) and 88 A (at 25oC GCMX030A170S1-E1). In addition to low switching losses, both modules have a low junction-to-case thermal resistance of 0.19oC and 0.36oC per watt and feature an easy-mount design for direct mounting of the isolated package to a heatsink.
The half-bridge module is housed in a 61.4 x 106.4 x 30.9 mm 9-pin S3 package and delivers a power dissipation of 2113 W with a continuous drain current of 397 A and a pulsed drain current of 700 A. In addition to low switching losses, the GCMX005A170S3B1-N module has a junction to case thermal resistance of 0.06oC per watt.
Original – SemiQ
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG1 Min Read
Toyoda Gosei’s technology to enhance GaN substrates has been verified to improve power device performance. An article confirming it was published in Physica Status Solidi (RRL) – Rapid Research Letters, an international scientific journal for solid state physics.
Better power devices are indispensable for CO2 reduction in society, as they regulate electric power everywhere. Switching material from silicon to gallium nitride enables 90% energy-saving, superior devices, for which mass production of larger quality GaN substrates is requisite.
The Japanese Ministry of the Environment is leading a project for broad application of GaN power devices, for which Toyoda Gosei is providing technology to obtain ideal GaN crystals. One outcome of the project is a demonstrable improvement in power device performance with a GaN substrate fabricated on a GaN seed crystal that Toyoda Gosei jointly developed with Osaka University. Compared to power devices made on commercially-available substrates, power devices using these GaN substrates show higher performance in both power regulation capacity and yield ratio.
Toyoda Gosei will continue collaborating with government, universities, and other corporations for earlier dissemination of large quality GaN substrates.
Original – Toyoda Gosei
-
GaN / LATEST NEWS / WBG4 Min Read
Aehr Test Systems has received an initial production order from a top tier automotive semiconductor supplier for a FOX-XP™ wafer level test and burn-in system with fully integrated FOX WaferPak™ Aligner for production test of their gallium nitride (GaN) power semiconductor devices. The FOX-XP system with integrated WaferPak Aligner is scheduled to ship immediately.
Gayn Erickson, President and CEO of Aehr Test Systems, commented, “We have been working closely with this customer for over a year to support their evaluation and qualification process for delivering GaN power semiconductor devices to their customers. We are thrilled to receive this initial production purchase order, signaling their commitment to move forward with volume production wafer level burn-in of their GaN devices on our FOX-XP platform.
“This customer has extensively utilized a FOX-NP system under an evaluation agreement for production qualification and reliability testing of their devices over the past year. As part of the evaluation, they purchased a significant number of our proprietary WaferPak full wafer Contactors to successfully qualify a wide range of GaN device types designed for multiple end use applications including industrial, solar, data center, and automotive markets.
“Our FOX-P platform allows customers using the FOX-NP for device qualification and reliability testing of power semiconductors like GaN and silicon carbide (SiC) to transition seamlessly to the FOX-XP multi-wafer fully automated system, which is capable of testing up to nine wafers in parallel and is specifically designed to handle high-voltage testing and high temperature Gate and Drain stress test requirements. By leveraging our FOX-XP system and our proprietary WaferPak full wafer Contactors, customers can easily test wafers of varying sizes from 6 to 12 inches by simply purchasing new WaferPaks, while utilizing the same FOX-XP system and FOX WaferPak Aligner.
“Like SiC, GaN semiconductor MOSFETs are wide bandgap devices that offer significantly higher power conversion efficiency than silicon. GaN is particularly well suited for lower power applications such as sub-1000-watt power converters (fast chargers) used in consumer electronics like cell phones, tablets, and laptops. Additionally, it is increasingly being adopted for automotive power converters, supporting electrical systems in both electric and traditional gasoline-powered cars, as well as being targeted at data center power applications where power efficiency and delivery are critical to support the massive amount of computing power and data storage being installed over the next decade. Along with the increased usage in automotive and data centers, many industry experts and analysts predict that GaN MOSFETs will eventually replace silicon as the preferred technology for power conversion in photovoltaic (solar panel) applications.
“We view GaN as a transformative and rapidly growing technology in the power semiconductor market. With an anticipated compound annual growth rate of more than 40%, the GaN market is projected to reach $2.5 billion in annual device sales by 2029 according to Yole Group’s Power SiC/GaN Compound Semiconductor Market Monitor. In addition, Frost & Sullivan estimates GaN semiconductors will account for over 10% of the worldwide power semiconductor industry by the year 2028. This represents a significant growth opportunity for Aehr’s wafer level test and burn-in solutions.”
The FOX-XP and FOX-NP systems, available with multiple WaferPak Contactors (full wafer test) or multiple DiePakTM Carriers (singulated die/module test) configurations, are capable of functional test and burn-in/cycling of devices such as silicon carbide and gallium nitride power semiconductors, artificial intelligence processors, silicon photonics as well as other optical devices, 2D and 3D sensors, flash memories, magnetic sensors, microcontrollers, and other leading-edge ICs in either wafer form factor, before they are assembled into single or multi-die stacked packages, or in singulated die or module form factor.
Original – Aehr Test Systems