• SMA Adopts Semikron Danfoss Power Module Featuring ROHM’s 2kV SiC MOSFET for Next-Gen Solar Inverters

    SMA Adopts Semikron Danfoss Power Module Featuring ROHM’s 2kV SiC MOSFET for Next-Gen Solar Inverters

    2 Min Read

    In a major step toward advancing renewable energy technologies, SMA Solar Technology AG has selected a new high-performance power module from Semikron Danfoss, integrating ROHM’s latest 2kV Silicon Carbide (SiC) MOSFETs. This collaboration marks a milestone in the evolution of high-voltage solar inverter solutions.

    The new SEMITOP E1/E2 SiC power module from Semikron Danfoss combines compact design with cutting-edge 2kV-rated SiC MOSFETs from ROHM. Tailored specifically for solar applications, the solution addresses the rising demands for higher voltage, increased efficiency, and greater system reliability.

    Key Benefits:

    • Higher System Voltage: Enables 1500V DC systems with reduced derating margins, maximizing energy yield.
    • Improved Efficiency: SiC technology dramatically reduces switching losses compared to traditional silicon, enhancing overall inverter performance.
    • Compact Design: Supports smaller inverter footprints and lower system costs due to reduced cooling requirements and simpler circuitry.
    • Extended Lifetime: Enhanced reliability and ruggedness, crucial for long-term solar energy deployments.

    By adopting Semikron Danfoss’ advanced SiC modules, SMA positions itself at the forefront of the solar inverter industry, delivering more efficient and resilient solutions for the fast-growing global renewable energy market.

    This partnership underlines the growing importance of wide-bandgap semiconductors like SiC in renewable energy applications. As the demand for high-efficiency, high-voltage solar inverters continues to soar, collaborations like this set new industry benchmarks for performance and sustainability.

    Original – Semikron Danfoss

    Comments Off on SMA Adopts Semikron Danfoss Power Module Featuring ROHM’s 2kV SiC MOSFET for Next-Gen Solar Inverters
  • ROHM Unveils High Power Density SiC Modules in HSDIP20 Package, Redefining OBC Efficiency and Miniaturization for xEVs

    ROHM Unveils High Power Density SiC Modules in HSDIP20 Package, Redefining OBC Efficiency and Miniaturization for xEVs

    2 Min Read

    ROHM has developed the new 4-in-1 and 6-in-1 SiC molded modules in the HSDIP20 package optimized for PFC and LLC converters in onboard chargers (OBC) for xEVs (electric vehicles). The lineup includes six models rated at 750V (BSTxxx1P4K01) and seven products rated at 1200V (BSTxxx2P4K01). All basic circuits required for power conversion in various high-power applications are integrated into a compact module package, reducing the design workload for manufacturers and enabling the miniaturization of power conversion circuits in OBCs and other applications.

    In recent years, the rapid electrification of cars is driving efforts to achieve a decarbonized society. Electric vehicles are seeing higher battery voltages to extend the cruising range and improve charging speed, creating a demand for higher output from OBCs and DC-DC converters. At the same time, there is an increasing need in the market for greater miniaturization and lighter weight for these applications, requiring technological breakthroughs to improve power density – a key factor – while enhancing heat dissipation characteristics that could otherwise hinder progress.

    ROHM’s HSDIP20 package addresses these technical challenges that were previously becoming difficult to overcome with discrete configurations, contributing to both higher output and the downsizing of electric powertrains.

    The HSDIP20 features an insulating substrate with excellent heat dissipation properties that suppresses the chip temperature rise even during high power operation. When comparing a typical OBC PFC circuit utilizing six discrete SiC MOSFETs with top-side heat dissipation to ROHM’s 6-in-1 module under the same conditions, the HSDIP20 package was verified to be approx. 38°C cooler (at 25W operation).

    This high heat dissipation performance supports high currents even in a compact package, achieving industry-leading power density more than three times higher than top-side cooled discretes and over 1.4 times that of similar DIP type modules. As a result, in the PFC circuit mentioned above, the HSDIP20 can reduce mounting area by approx. 52% compared to top-side cooled discrete configurations, greatly contributing to the miniaturization of power conversion circuits in applications such as OBCs.

    Going forward, ROHM will continue to advance the development of SiC modules that balance miniaturization with high efficiency while also focusing on the development of automotive SiC IPMs that provide higher reliability in a smaller form factor.

    Original – ROHM

    Comments Off on ROHM Unveils High Power Density SiC Modules in HSDIP20 Package, Redefining OBC Efficiency and Miniaturization for xEVs
  • SemiQ Launches Third-Gen 1200V SiC MOSFET Modules with Ultra-Fast Switching and Low Losses for High-Performance Power Applications

    SemiQ Launches Third-Gen 1200V SiC MOSFET Modules with Ultra-Fast Switching and Low Losses for High-Performance Power Applications

    2 Min Read

    SemiQ Inc has announced a family of co-packaged 1200 V SOT-227 MOSFET modules based on its third-generation SiC technology.

    In addition to smaller die sizes, third generation SIC devices offer faster switching speeds and reduced losses.

    The family of highly rugged and easy mount devices currently offers six devices with an RDSon range of 8.4 to 39 mΩ: GCMS008C120S1-E1, GCMX008C120S1-E1, GCMS016C120S1-E1, GCMX016C120S1-E1, GCMS040C120S1-E1 and GCMX040C120S1-E1, with the GCMX040C120S1-E1 having a switching time as low as 67 ns. In addition to these six, two further modules – GCMS080C120S1-E1 and GCMX080C120S1-E1 – are available, each with an RDSon of 80 mΩ.

    The COPACK MOSFETs with Schottky barrier diode provides exceptional switching losses at high junction temperature due to the low turn on switching losses.

    SemiQ is targeting the robust SiC MOSFET modules at applications including solar inverters, energy storage systems, battery charging, and server power supplies. All devices have been screened with wafer-level gate-oxide burn-in tests and tested beyond 1400 V, with avalanche testing to 330 mJ (RDSon = 39 mΩ) or 800 mJ (RDSon = 16.5 or 8.4 mΩ).

    In addition to having a drain-to-source voltage (VDS) of 1200 V, the MOSFET reduces total switching losses to as low as 468 µJ and a reverse recovery charge of 172 nC (GCMX040C120S1-E1). The family also has a low junction-to-case thermal resistance and comes with an isolated backplate and the ability to directly mount to a heatsink by 4kVAC galvanic isolation testing.

    Specifications: Ratings and electrical/thermal characteristics

    The QSiC 1200 V MOSFET modules have a continuous operational and storage temperature of -55oC to 175oC. It has a recommended operational gate-source voltage of -4.5/18 V, with a VGSmax of -8/22 V, and a power dissipation of 183 to 536 W (RDSon = 39 and   mΩ, core and junction temperature 25oC).

    For static electrical characteristics, the device has a junction-to-case thermal resistance of 0.23oC per watt (RDSon = 8.4) as well as a typical zero-gate voltage drain current of 100 nA, and a gate-source voltage current of 10 nA.

    The fastest switching device has a turn-on delay time of 13 ns with a rise time of 7 ns; its turn-off delay time is 18 ns with a fall time of 29 ns.

    Original – SemiQ

    Comments Off on SemiQ Launches Third-Gen 1200V SiC MOSFET Modules with Ultra-Fast Switching and Low Losses for High-Performance Power Applications
  • Navitas Semiconductor Launches Epoxy-Potted 1200V SiCPAK™ Modules with Trench-Assisted SiC Tech for Ultra-Reliable High-Power Applications

    Navitas Semiconductor Launches Epoxy-Potted 1200V SiCPAK™ Modules with Trench-Assisted SiC Tech for Ultra-Reliable High-Power Applications

    2 Min Read

    Navitas Semiconductor announced the release of its latest SiCPAK™ power modules with epoxy-resin potting technology, powered by proprietary trench-assisted planar SiC MOSFET technology, that have been rigorously designed and validated for the most demanding high-power environments, prioritizing reliability and high-temperature performance. Target markets include EV DC fast chargers (DCFC), industrial motor drives, interruptible power supplies (UPS), solar inverters and power optimizers, energy storage systems (ESS), industrial welding, and induction heating.

    The new portfolio of 1200V SiCPAK™ power modules, enabled by advanced epoxy-resin potting technology, are engineered to withstand high-humidity environments by preventing moisture ingression and enable stable thermal performance by reducing degradation from power and temperature variations.

    Navitas’ SiCPAK™ modules demonstrated 5x lower thermal resistance increase following 1000 cycles of thermal shock testing (-40 C to + 125 C) compared to conventional silicone-gel-filled case-type modules. Furthermore, all silicone-gel-filled modules failed isolation tests while SiCPAK™ epoxy-resin potted modules maintained acceptable isolation levels.

    Enabled by over 20 years of SiC innovation leadership, Navitas’ GeneSiC™ ‘trench-assisted planar SiC MOSFET technology’ provides industry-leading performance over temperature, enabling up to 20% lower losses, cooler operation, and superior robustness to support long-term system reliability.

    The ‘trench-assisted planar’ technology enables an extremely low RDS(ON) increase versus temperature, which results in the lowest power losses across a wider operating range and offers up to 20% lower RDS(ON) under in-circuit operation at high temperatures compared to competition. Additionally, all GeneSiC™ SiC MOSFETs have the highest-published 100%-tested avalanche capability, up to 30% better short-circuit withstand energy, and tight threshold voltage distributions for easy paralleling.

    The 1200V SiCPAK™ power modules have built-in NTC thermistors and are available from 4.6 mΩ to 18.5 mΩ ratings in half-bridge, full-bridge, and 3L-T-NPC circuit configurations. They are pin-to-pin compatible with industry-standard press-fit modules. Additionally, optional pre-applied Thermal Interface Material (TIM) for simplified assembly is available.

    Original – Navitas Semiconductor

    Comments Off on Navitas Semiconductor Launches Epoxy-Potted 1200V SiCPAK™ Modules with Trench-Assisted SiC Tech for Ultra-Reliable High-Power Applications
  • Polar Semiconductor and Renesas Partner to Scale 200mm GaN-on-Si Power Devices in U.S.-Based High-Volume Fab

    Polar Semiconductor and Renesas Partner to Scale 200mm GaN-on-Si Power Devices in U.S.-Based High-Volume Fab

    2 Min Read

    Polar Semiconductor announced the finalization of a strategic agreement with Renesas Electronics Corporation to license their Gallium Nitride on Silicon D-Mode (GaN-on-Si) technology. As part of this agreement, Polar will fabricate High Voltage 650V Class GaN-on-Si devices for Renesas and other customers in its 200mm automotive quality high-volume manufacturing facility in Minnesota. This facility, recently expanded with state-of-the-art processing and automation equipment, is poised to meet growing demand for next-generation semiconductor solutions.

    Polar and Renesas will work together to scale commercial production of GaN devices, expanding its use across critical industries, including automotive, data center, consumer, industrial, and aerospace & defense markets. The agreement ensures the U.S. has a reliable, domestic source for this cutting-edge semiconductor technology.

    Market adoption of GaN technology will be accelerated through cost efficiency and innovative device architectures enabled by scaling to 200mm fabrication. By leveraging Polar’s manufacturing expertise and Renesas’ proven power semiconductor technology and commercial leadership, this strategic collaboration ensures customers a secure supply of cost-competitive, superior quality, and high-performance GaN device wafers.

    Surya Iyer, President and COO of Polar Semiconductor, said, “This licensing and commercial production agreement underscores our commitment to strengthening the domestic semiconductor ecosystem. GaN is a game-changing technology for Power and RF, and with Renesas as our partner, we are well-positioned to ramp commercial production, secure key defense programs, and drive the next wave of semiconductor innovation.”

    “We are excited to partner with Polar to scale our proven GaN technology to 200mm wafers and leverage our know-how across broad power conversion markets ranging from Infrastructure & AI to Energy & Industrial to e-Mobility & xEVs to high-value IoT,” said Chris Allexandre, SVP & GM, Power Products Group, at Renesas. “This collaboration ensures a strong, U.S.-based manufacturing capability for GaN products, provides multi-sourcing to our customers, and meets the growing demand for high-performance power solutions.”

    Original – Polar Semiconductor

    Comments Off on Polar Semiconductor and Renesas Partner to Scale 200mm GaN-on-Si Power Devices in U.S.-Based High-Volume Fab
  • Mitsubishi Electric Unveils First SiC SLIMDIP Modules for Energy-Efficient Home Appliances, Slashing Power Loss by Up to 79%

    Mitsubishi Electric Unveils First SiC SLIMDIP Modules for Energy-Efficient Home Appliances, Slashing Power Loss by Up to 79%

    2 Min Read

    Mitsubishi Electric Corporation announced that it will begin shipping samples of two new SLIMDIP series power semiconductor modules for room air conditioners and other home appliances, the Full SiC (silicon carbide) SLIMDIP (PSF15SG1G6) and the Hybrid SiC SLIMDIP (PSH15SG1G6), on April 22.

    Both modules, the first SiC versions in the company’s SLIMDIP series of compact, terminal-optimized modules, achieve excellent output and power loss reduction for energy savings in small- to large-capacity appliances. They will be exhibited at Power Conversion Intelligent Motion (PCIM) Expo & Conference 2025 in Nuremberg, Germany from May 6 to 8, as well as trade shows in Japan, China and other countries.

    Mitsubishi Electric’s newly developed silicon carbide metal-oxide-semiconductor field-effect transistor (SiC-MOSFET) chip is incorporated into both new SLIMDIP packages. Compared to current silicon (Si)-based reverse-conducting insulated-gate bipolar transistor (RC-IGBT) SLIMDIP modules, these new SiC modules achieve higher output for larger-capacity appliances. Additionally, compared to the Si-based module, power loss is reduced by 79% with the Full SiC SLIMDIP and by 47% with the Hybrid SiC SLIMDIP for more energy-efficient appliances.

    With these two new modules as well as existing Si-based RC-IGBT SLIMDIP modules, the SLIMDIP series now offers three options for use in inverter boards of appliances such as room air conditioners, each one suited to specific electrical capacity and performance needs, but all offered in the same package to help reduce the burden of designing inverter substrates.

    Original – Mitsubishi Electric

    Comments Off on Mitsubishi Electric Unveils First SiC SLIMDIP Modules for Energy-Efficient Home Appliances, Slashing Power Loss by Up to 79%
  • SemiQ Launches High-Efficiency 1200V SiC MOSFET Six-Pack Modules for Scalable, Compact Power Designs

    SemiQ Launches High-Efficiency 1200V SiC MOSFET Six-Pack Modules for Scalable, Compact Power Designs

    2 Min Read

    SemiQ Inc has announced a series of highly efficient 1200 V SiC MOSFET Six-Pack Modules. These have been designed to enable lower cost and more compact system-level designs at large scale.

    The rugged, high-speed switching SiC MOSFETs implement a planar technology with rugged gate oxide and feature a reliable body diode. These are arranged in a three-phase bridge topology, with the modules additionally featuring split DC negative terminals, press-fit terminal connections and a Kelvin reference for stable operation.

    The high-power-density modules benefit from low switching losses, as well as low junction-to-case thermal resistance and all parts have been tested beyond 1350 V, with 100% wafer-level burn in (WLBI).

    They have been developed for applications including AC/DC converters, energy storage systems, battery charging, motor drives and PFC boost converters, including EV fast charging, induction heating and welding, renewable energy supplies and UPS.

    The modules are operational to 175oC junction temperature, and have been designed for easy mounting, including direct mounting to a heatsink. The product family has been launched with 20, 40 and 80mΩ variants (GCMX020A120B2T1PGCMX040A120B2T1PGCMX080A120B2T1P) that have a power dissipation of 263, 160 and 103 W respectively.

    They conduct a continuous drain current of 29 – 30A, and a pulsed drain current of 70 A. Additionally, they have turn-on switching energy of 0.1- 0.54 mJ and a turn-off switching energy of 0.02 – 0.11 mJ, with a switching time of 56 – 105 ns.

    The module is available immediately in a 62.8 x 33.8 x 15 mm package including heatsink mountings.

    Original – SemiQ

    Comments Off on SemiQ Launches High-Efficiency 1200V SiC MOSFET Six-Pack Modules for Scalable, Compact Power Designs
  • Navitas’ GaNSafe™ Power ICs Achieve Dual Automotive Qualification, Marking Major Milestone for GaN in EV Market

    Navitas’ GaNSafe™ Power ICs Achieve Dual Automotive Qualification, Marking Major Milestone for GaN in EV Market

    2 Min Read

    Navitas Semiconductor has announced its high-power GaNSafe™ ICs achieve automotive qualification for both AEC-Q100 and AEC-Q101, showcasing GaN’s next inflection into the automotive market.

    Navitas high-power GaNSafe 4th generation family integrates control, drive, sensing, and critical protection features that enable unprecedented reliability and robustness in high-power applications. It is the world’s safest GaN with short-circuit protection (350ns max latency), 2kV ESD protection on all pins, elimination of negative gate drive, and programmable slew rate control. All these features are controlled with 4-pins, allowing the package to be treated like a discrete GaN FET, requiring no VCC pin.

    The Automotive Electronics Council (AEC) lists various qualifications focused on failure mechanism-based stress tests for packaged integrated circuits (AEC-Q100) and discrete semiconductors (AEC-Q101) used in automotive applications. Navitas’ GaNSafe™ has been qualified to both standards to ensure that both the discrete power FET stage and the combined IC solution meet these stringent specifications.

    To support the qualification, Navitas has created a comprehensive reliability report that analyzes over 7 years of production and field data. It demonstrates their track record, alongside generational and family improvements in robustness and reliability, establishing GaN power ICs as highly reliable and automotive-ready. This reliability report is available to qualified customers.

    Additionally in March 2025, Navitas unveiled the world’s first production released 650V Bi-Directional GaNFast ICs with IsoFast Drivers, creating a paradigm shift in power to enable the transition from two-stage to single-stage topologies to further enhance efficiency, power density, and performance in AC-DC and AC-AC conversion. This would allow next-generation single-stage OBCs to provide bi-directional charging in a high-efficiency, extremely compact solution – which eliminates bulky capacitors and input inductors.

    A leading EV and solar micro-inverter manufacturer have already begun their implementation of single-stage BDS converters to improve efficiency, size, and cost in their systems. GaNFast-enabled single-stage BDS converters achieve up to 10% cost savings, 20% energy savings, and up to 50% size reductions.

    “Our latest reliability report is the culmination of years of innovation and field experience,” said Gene Sheridan, CEO and co-founder of Navitas. “With more than 250 million units shipped, over 2 trillion field devices hours and a cumulative field failure rate that is now approaching 100 parts per billion, we’re leading the charge in making GaN the go-to technology for EV power systems.”

    Original – Navitas Semiconductor

    Comments Off on Navitas’ GaNSafe™ Power ICs Achieve Dual Automotive Qualification, Marking Major Milestone for GaN in EV Market
  • Diodes Inc. Expands SiC Portfolio with Ultra-Efficient 650V Schottky Diodes Targeting AI, Data Centers, and Renewable Power

    Diodes Inc. Expands SiC Portfolio with Ultra-Efficient 650V Schottky Diodes Targeting AI, Data Centers, and Renewable Power

    2 Min Read

    Diodes Incorporated announced the expansion of its silicon carbide (SiC) product portfolio with a series of five high-performance, low figure-of-merit (FOM) 650V SiC Schottky diodes. Rated at 4A, 6A, 8A, 10A, and 12A, the DSCxxA065LP series is housed in the ultra-thermally efficient T-DFN8080-4 package and is designed for high-efficiency power switching applications, such as DC to DC and AC to DC conversion, renewable energy, data centers (especially those that process heavy artificial intelligence (AI) workloads), and industrial motor drives.

    The industry-leading FOM, calculated as FOM=QC×VF, is attributed to:

    • Negligible switching losses, thanks to the absence of reverse recovery current and low capacitive charge (QC), and
    • Low forward voltage (VF) minimizing conduction losses, enhancing overall power efficiency.

    These characteristics make them ideal for high-speed switching circuits.

    The high-performance SiC diodes are also notable for their lowest reverse leakage (IR) in the industry, at 20µA (max.). This minimizes heat dissipation and conduction losses, improving system stability and reliability, particularly in comparison to silicon Schottky devices. This reduction in heat dissipation also lowers cooling costs and operating expenses.

    The compact and low-profile T-DFN8080-4 (typ. 8mm x 8mm x 1mm) surface mount package incorporates a large underside heat pad, which reduces thermal resistance. Requiring less board space and providing a larger heat pad, the T‑DFN8080-4 is an ideal alternative to the TO252 (DPAK). This benefits circuit designs by increasing power density, reducing overall solution size, and lowering the cooling budget.

    The 4A DSC04A065LP, 6A DSC06A065LP, 8A DSC08A065LP, 10A DSC10A065LP, and 12A DSC12A065LP are available at $1.25, $1.55, $1.80, $2.10, and $2.40, respectively, each in 2,500-piece quantities.

    Original – Diodes Incorporated

    Comments Off on Diodes Inc. Expands SiC Portfolio with Ultra-Efficient 650V Schottky Diodes Targeting AI, Data Centers, and Renewable Power
  • Hyperdrives and CISSOID Partner to Deliver Ultra-Compact, High-Efficiency SiC-Based Electric Drive Units for Next-Gen e-Mobility

    Hyperdrives and CISSOID Partner to Deliver Ultra-Compact, High-Efficiency SiC-Based Electric Drive Units for Next-Gen e-Mobility

    2 Min Read

    Hyperdrives, a pioneer in advanced electric motor technology, has chosen CISSOID’s state-of-the-art Silicon Carbide (SiC) Inverter Control Modules (ICMs) to power its revolutionary hollow conductor cooled electric motors. This collaboration aims to set new standards in power density, efficiency, and performance within the electric vehicle industry and beyond.

    Hyperdrives’ innovative approach utilizes a direct cooling system that dissipates heat at its source by channelling cooling fluid through hollow conductor windings. This design enhances heat dissipation by a factor of ten, allowing for continuous currents three times higher than traditional systems and resulting in motors that are twice as power-dense. The company’s automotive flagship product, Hyperdrives One, exemplifies this technology, offering exceptional peak and continuous power and torque density while reducing material costs by up to 40%.

    To complement this cutting-edge motor design, Hyperdrives has integrated CISSOID’s 3-Phase 1200V/550A SiC Inverter Control Module. Combining high efficiency with robust control, the CXT-ICM3SA series integrates SiC power modules, gate driver boards, and control boards featuring Intel Automotive’s T222 Adaptive Control Unit (ACU) with its accompanying control software. The combination ensures rapid development and deployment of high-performance e- mobility drivetrains. Motor drive developers can also leverage CISSOID’s SiC Inverter Reference Designs to further accelerate their design cycle. 

    Benjamin Hengstler, Co-Founder of Hyperdrives, expressed enthusiasm about the partnership: „Finding an inverter solution that matches the extreme power density of our hollow conductor cooled motors was a real challenge – but with CISSOID’s SiC Inverter Control Module we found exactly that. The result is an ultra-compact, ready-to-install EDU that is second-to-none in gravimetric and volumetric power density. The great feedback from our customers in automotive, aviation and marine is a testament to this long-standing collaboration.” 

    Pierre Delatte, CTO of CISSOID, added: “Partnering with Hyperdrives is an exciting opportunity to push the boundaries of electric drive systems. Our SiC inverter technology is designed to meet the highest standards in power conversion, and together with Hyperdrives’ cutting-edge motors, we are enabling a new era of electrification.” 

    This strategic collaboration between Hyperdrives and CISSOID is poised to deliver electric drive systems that offer unparalleled efficiency, compactness, and performance, setting a new benchmark in the electric vehicle industry.

    Original – CISSOID

    Comments Off on Hyperdrives and CISSOID Partner to Deliver Ultra-Compact, High-Efficiency SiC-Based Electric Drive Units for Next-Gen e-Mobility