• ROHM Unveils High Power Density SiC Modules in HSDIP20 Package, Redefining OBC Efficiency and Miniaturization for xEVs

    ROHM Unveils High Power Density SiC Modules in HSDIP20 Package, Redefining OBC Efficiency and Miniaturization for xEVs

    2 Min Read

    ROHM has developed the new 4-in-1 and 6-in-1 SiC molded modules in the HSDIP20 package optimized for PFC and LLC converters in onboard chargers (OBC) for xEVs (electric vehicles). The lineup includes six models rated at 750V (BSTxxx1P4K01) and seven products rated at 1200V (BSTxxx2P4K01). All basic circuits required for power conversion in various high-power applications are integrated into a compact module package, reducing the design workload for manufacturers and enabling the miniaturization of power conversion circuits in OBCs and other applications.

    In recent years, the rapid electrification of cars is driving efforts to achieve a decarbonized society. Electric vehicles are seeing higher battery voltages to extend the cruising range and improve charging speed, creating a demand for higher output from OBCs and DC-DC converters. At the same time, there is an increasing need in the market for greater miniaturization and lighter weight for these applications, requiring technological breakthroughs to improve power density – a key factor – while enhancing heat dissipation characteristics that could otherwise hinder progress.

    ROHM’s HSDIP20 package addresses these technical challenges that were previously becoming difficult to overcome with discrete configurations, contributing to both higher output and the downsizing of electric powertrains.

    The HSDIP20 features an insulating substrate with excellent heat dissipation properties that suppresses the chip temperature rise even during high power operation. When comparing a typical OBC PFC circuit utilizing six discrete SiC MOSFETs with top-side heat dissipation to ROHM’s 6-in-1 module under the same conditions, the HSDIP20 package was verified to be approx. 38°C cooler (at 25W operation).

    This high heat dissipation performance supports high currents even in a compact package, achieving industry-leading power density more than three times higher than top-side cooled discretes and over 1.4 times that of similar DIP type modules. As a result, in the PFC circuit mentioned above, the HSDIP20 can reduce mounting area by approx. 52% compared to top-side cooled discrete configurations, greatly contributing to the miniaturization of power conversion circuits in applications such as OBCs.

    Going forward, ROHM will continue to advance the development of SiC modules that balance miniaturization with high efficiency while also focusing on the development of automotive SiC IPMs that provide higher reliability in a smaller form factor.

    Original – ROHM

    Comments Off on ROHM Unveils High Power Density SiC Modules in HSDIP20 Package, Redefining OBC Efficiency and Miniaturization for xEVs
  • SemiQ Launches Third-Gen 1200V SiC MOSFET Modules with Ultra-Fast Switching and Low Losses for High-Performance Power Applications

    SemiQ Launches Third-Gen 1200V SiC MOSFET Modules with Ultra-Fast Switching and Low Losses for High-Performance Power Applications

    2 Min Read

    SemiQ Inc has announced a family of co-packaged 1200 V SOT-227 MOSFET modules based on its third-generation SiC technology.

    In addition to smaller die sizes, third generation SIC devices offer faster switching speeds and reduced losses.

    The family of highly rugged and easy mount devices currently offers six devices with an RDSon range of 8.4 to 39 mΩ: GCMS008C120S1-E1, GCMX008C120S1-E1, GCMS016C120S1-E1, GCMX016C120S1-E1, GCMS040C120S1-E1 and GCMX040C120S1-E1, with the GCMX040C120S1-E1 having a switching time as low as 67 ns. In addition to these six, two further modules – GCMS080C120S1-E1 and GCMX080C120S1-E1 – are available, each with an RDSon of 80 mΩ.

    The COPACK MOSFETs with Schottky barrier diode provides exceptional switching losses at high junction temperature due to the low turn on switching losses.

    SemiQ is targeting the robust SiC MOSFET modules at applications including solar inverters, energy storage systems, battery charging, and server power supplies. All devices have been screened with wafer-level gate-oxide burn-in tests and tested beyond 1400 V, with avalanche testing to 330 mJ (RDSon = 39 mΩ) or 800 mJ (RDSon = 16.5 or 8.4 mΩ).

    In addition to having a drain-to-source voltage (VDS) of 1200 V, the MOSFET reduces total switching losses to as low as 468 µJ and a reverse recovery charge of 172 nC (GCMX040C120S1-E1). The family also has a low junction-to-case thermal resistance and comes with an isolated backplate and the ability to directly mount to a heatsink by 4kVAC galvanic isolation testing.

    Specifications: Ratings and electrical/thermal characteristics

    The QSiC 1200 V MOSFET modules have a continuous operational and storage temperature of -55oC to 175oC. It has a recommended operational gate-source voltage of -4.5/18 V, with a VGSmax of -8/22 V, and a power dissipation of 183 to 536 W (RDSon = 39 and   mΩ, core and junction temperature 25oC).

    For static electrical characteristics, the device has a junction-to-case thermal resistance of 0.23oC per watt (RDSon = 8.4) as well as a typical zero-gate voltage drain current of 100 nA, and a gate-source voltage current of 10 nA.

    The fastest switching device has a turn-on delay time of 13 ns with a rise time of 7 ns; its turn-off delay time is 18 ns with a fall time of 29 ns.

    Original – SemiQ

    Comments Off on SemiQ Launches Third-Gen 1200V SiC MOSFET Modules with Ultra-Fast Switching and Low Losses for High-Performance Power Applications
  • Navitas Semiconductor Launches Epoxy-Potted 1200V SiCPAK™ Modules with Trench-Assisted SiC Tech for Ultra-Reliable High-Power Applications

    Navitas Semiconductor Launches Epoxy-Potted 1200V SiCPAK™ Modules with Trench-Assisted SiC Tech for Ultra-Reliable High-Power Applications

    2 Min Read

    Navitas Semiconductor announced the release of its latest SiCPAK™ power modules with epoxy-resin potting technology, powered by proprietary trench-assisted planar SiC MOSFET technology, that have been rigorously designed and validated for the most demanding high-power environments, prioritizing reliability and high-temperature performance. Target markets include EV DC fast chargers (DCFC), industrial motor drives, interruptible power supplies (UPS), solar inverters and power optimizers, energy storage systems (ESS), industrial welding, and induction heating.

    The new portfolio of 1200V SiCPAK™ power modules, enabled by advanced epoxy-resin potting technology, are engineered to withstand high-humidity environments by preventing moisture ingression and enable stable thermal performance by reducing degradation from power and temperature variations.

    Navitas’ SiCPAK™ modules demonstrated 5x lower thermal resistance increase following 1000 cycles of thermal shock testing (-40 C to + 125 C) compared to conventional silicone-gel-filled case-type modules. Furthermore, all silicone-gel-filled modules failed isolation tests while SiCPAK™ epoxy-resin potted modules maintained acceptable isolation levels.

    Enabled by over 20 years of SiC innovation leadership, Navitas’ GeneSiC™ ‘trench-assisted planar SiC MOSFET technology’ provides industry-leading performance over temperature, enabling up to 20% lower losses, cooler operation, and superior robustness to support long-term system reliability.

    The ‘trench-assisted planar’ technology enables an extremely low RDS(ON) increase versus temperature, which results in the lowest power losses across a wider operating range and offers up to 20% lower RDS(ON) under in-circuit operation at high temperatures compared to competition. Additionally, all GeneSiC™ SiC MOSFETs have the highest-published 100%-tested avalanche capability, up to 30% better short-circuit withstand energy, and tight threshold voltage distributions for easy paralleling.

    The 1200V SiCPAK™ power modules have built-in NTC thermistors and are available from 4.6 mΩ to 18.5 mΩ ratings in half-bridge, full-bridge, and 3L-T-NPC circuit configurations. They are pin-to-pin compatible with industry-standard press-fit modules. Additionally, optional pre-applied Thermal Interface Material (TIM) for simplified assembly is available.

    Original – Navitas Semiconductor

    Comments Off on Navitas Semiconductor Launches Epoxy-Potted 1200V SiCPAK™ Modules with Trench-Assisted SiC Tech for Ultra-Reliable High-Power Applications
  • Mitsubishi Electric Unveils First SiC SLIMDIP Modules for Energy-Efficient Home Appliances, Slashing Power Loss by Up to 79%

    Mitsubishi Electric Unveils First SiC SLIMDIP Modules for Energy-Efficient Home Appliances, Slashing Power Loss by Up to 79%

    2 Min Read

    Mitsubishi Electric Corporation announced that it will begin shipping samples of two new SLIMDIP series power semiconductor modules for room air conditioners and other home appliances, the Full SiC (silicon carbide) SLIMDIP (PSF15SG1G6) and the Hybrid SiC SLIMDIP (PSH15SG1G6), on April 22.

    Both modules, the first SiC versions in the company’s SLIMDIP series of compact, terminal-optimized modules, achieve excellent output and power loss reduction for energy savings in small- to large-capacity appliances. They will be exhibited at Power Conversion Intelligent Motion (PCIM) Expo & Conference 2025 in Nuremberg, Germany from May 6 to 8, as well as trade shows in Japan, China and other countries.

    Mitsubishi Electric’s newly developed silicon carbide metal-oxide-semiconductor field-effect transistor (SiC-MOSFET) chip is incorporated into both new SLIMDIP packages. Compared to current silicon (Si)-based reverse-conducting insulated-gate bipolar transistor (RC-IGBT) SLIMDIP modules, these new SiC modules achieve higher output for larger-capacity appliances. Additionally, compared to the Si-based module, power loss is reduced by 79% with the Full SiC SLIMDIP and by 47% with the Hybrid SiC SLIMDIP for more energy-efficient appliances.

    With these two new modules as well as existing Si-based RC-IGBT SLIMDIP modules, the SLIMDIP series now offers three options for use in inverter boards of appliances such as room air conditioners, each one suited to specific electrical capacity and performance needs, but all offered in the same package to help reduce the burden of designing inverter substrates.

    Original – Mitsubishi Electric

    Comments Off on Mitsubishi Electric Unveils First SiC SLIMDIP Modules for Energy-Efficient Home Appliances, Slashing Power Loss by Up to 79%
  • SemiQ Launches High-Efficiency 1200V SiC MOSFET Six-Pack Modules for Scalable, Compact Power Designs

    SemiQ Launches High-Efficiency 1200V SiC MOSFET Six-Pack Modules for Scalable, Compact Power Designs

    2 Min Read

    SemiQ Inc has announced a series of highly efficient 1200 V SiC MOSFET Six-Pack Modules. These have been designed to enable lower cost and more compact system-level designs at large scale.

    The rugged, high-speed switching SiC MOSFETs implement a planar technology with rugged gate oxide and feature a reliable body diode. These are arranged in a three-phase bridge topology, with the modules additionally featuring split DC negative terminals, press-fit terminal connections and a Kelvin reference for stable operation.

    The high-power-density modules benefit from low switching losses, as well as low junction-to-case thermal resistance and all parts have been tested beyond 1350 V, with 100% wafer-level burn in (WLBI).

    They have been developed for applications including AC/DC converters, energy storage systems, battery charging, motor drives and PFC boost converters, including EV fast charging, induction heating and welding, renewable energy supplies and UPS.

    The modules are operational to 175oC junction temperature, and have been designed for easy mounting, including direct mounting to a heatsink. The product family has been launched with 20, 40 and 80mΩ variants (GCMX020A120B2T1PGCMX040A120B2T1PGCMX080A120B2T1P) that have a power dissipation of 263, 160 and 103 W respectively.

    They conduct a continuous drain current of 29 – 30A, and a pulsed drain current of 70 A. Additionally, they have turn-on switching energy of 0.1- 0.54 mJ and a turn-off switching energy of 0.02 – 0.11 mJ, with a switching time of 56 – 105 ns.

    The module is available immediately in a 62.8 x 33.8 x 15 mm package including heatsink mountings.

    Original – SemiQ

    Comments Off on SemiQ Launches High-Efficiency 1200V SiC MOSFET Six-Pack Modules for Scalable, Compact Power Designs
  • Diodes Inc. Expands SiC Portfolio with Ultra-Efficient 650V Schottky Diodes Targeting AI, Data Centers, and Renewable Power

    Diodes Inc. Expands SiC Portfolio with Ultra-Efficient 650V Schottky Diodes Targeting AI, Data Centers, and Renewable Power

    2 Min Read

    Diodes Incorporated announced the expansion of its silicon carbide (SiC) product portfolio with a series of five high-performance, low figure-of-merit (FOM) 650V SiC Schottky diodes. Rated at 4A, 6A, 8A, 10A, and 12A, the DSCxxA065LP series is housed in the ultra-thermally efficient T-DFN8080-4 package and is designed for high-efficiency power switching applications, such as DC to DC and AC to DC conversion, renewable energy, data centers (especially those that process heavy artificial intelligence (AI) workloads), and industrial motor drives.

    The industry-leading FOM, calculated as FOM=QC×VF, is attributed to:

    • Negligible switching losses, thanks to the absence of reverse recovery current and low capacitive charge (QC), and
    • Low forward voltage (VF) minimizing conduction losses, enhancing overall power efficiency.

    These characteristics make them ideal for high-speed switching circuits.

    The high-performance SiC diodes are also notable for their lowest reverse leakage (IR) in the industry, at 20µA (max.). This minimizes heat dissipation and conduction losses, improving system stability and reliability, particularly in comparison to silicon Schottky devices. This reduction in heat dissipation also lowers cooling costs and operating expenses.

    The compact and low-profile T-DFN8080-4 (typ. 8mm x 8mm x 1mm) surface mount package incorporates a large underside heat pad, which reduces thermal resistance. Requiring less board space and providing a larger heat pad, the T‑DFN8080-4 is an ideal alternative to the TO252 (DPAK). This benefits circuit designs by increasing power density, reducing overall solution size, and lowering the cooling budget.

    The 4A DSC04A065LP, 6A DSC06A065LP, 8A DSC08A065LP, 10A DSC10A065LP, and 12A DSC12A065LP are available at $1.25, $1.55, $1.80, $2.10, and $2.40, respectively, each in 2,500-piece quantities.

    Original – Diodes Incorporated

    Comments Off on Diodes Inc. Expands SiC Portfolio with Ultra-Efficient 650V Schottky Diodes Targeting AI, Data Centers, and Renewable Power
  • Hyperdrives and CISSOID Partner to Deliver Ultra-Compact, High-Efficiency SiC-Based Electric Drive Units for Next-Gen e-Mobility

    Hyperdrives and CISSOID Partner to Deliver Ultra-Compact, High-Efficiency SiC-Based Electric Drive Units for Next-Gen e-Mobility

    2 Min Read

    Hyperdrives, a pioneer in advanced electric motor technology, has chosen CISSOID’s state-of-the-art Silicon Carbide (SiC) Inverter Control Modules (ICMs) to power its revolutionary hollow conductor cooled electric motors. This collaboration aims to set new standards in power density, efficiency, and performance within the electric vehicle industry and beyond.

    Hyperdrives’ innovative approach utilizes a direct cooling system that dissipates heat at its source by channelling cooling fluid through hollow conductor windings. This design enhances heat dissipation by a factor of ten, allowing for continuous currents three times higher than traditional systems and resulting in motors that are twice as power-dense. The company’s automotive flagship product, Hyperdrives One, exemplifies this technology, offering exceptional peak and continuous power and torque density while reducing material costs by up to 40%.

    To complement this cutting-edge motor design, Hyperdrives has integrated CISSOID’s 3-Phase 1200V/550A SiC Inverter Control Module. Combining high efficiency with robust control, the CXT-ICM3SA series integrates SiC power modules, gate driver boards, and control boards featuring Intel Automotive’s T222 Adaptive Control Unit (ACU) with its accompanying control software. The combination ensures rapid development and deployment of high-performance e- mobility drivetrains. Motor drive developers can also leverage CISSOID’s SiC Inverter Reference Designs to further accelerate their design cycle. 

    Benjamin Hengstler, Co-Founder of Hyperdrives, expressed enthusiasm about the partnership: „Finding an inverter solution that matches the extreme power density of our hollow conductor cooled motors was a real challenge – but with CISSOID’s SiC Inverter Control Module we found exactly that. The result is an ultra-compact, ready-to-install EDU that is second-to-none in gravimetric and volumetric power density. The great feedback from our customers in automotive, aviation and marine is a testament to this long-standing collaboration.” 

    Pierre Delatte, CTO of CISSOID, added: “Partnering with Hyperdrives is an exciting opportunity to push the boundaries of electric drive systems. Our SiC inverter technology is designed to meet the highest standards in power conversion, and together with Hyperdrives’ cutting-edge motors, we are enabling a new era of electrification.” 

    This strategic collaboration between Hyperdrives and CISSOID is poised to deliver electric drive systems that offer unparalleled efficiency, compactness, and performance, setting a new benchmark in the electric vehicle industry.

    Original – CISSOID

    Comments Off on Hyperdrives and CISSOID Partner to Deliver Ultra-Compact, High-Efficiency SiC-Based Electric Drive Units for Next-Gen e-Mobility
  • SemiQ Delivers SiC MOSFET Modules for Next-Gen EV Battery Cell Cyclers Integration

    SemiQ Delivers SiC MOSFET Modules for Next-Gen EV Battery Cell Cyclers Integration

    2 Min Read

    SemiQ Inc has begun shipping its SiC MOSFET modules for integration into advanced cell cycling systems used by several of the world’s leading battery manufacturers.

    In lithium-ion batteries, cell cyclers enable the formation of a stable solid electrolyte interphase to enable increased longevity and performance. The systems also enable battery manufacturers to perform battery degradation analysis, temperature and stress testing, and check for defects or performance issues.

    To undertake these tasks, the cyclers need to accurately charge and discharge batteries, with high switching frequencies enabling more precise control of current and voltage to avoid damage from overcharging/discharging. For this function, the MOSFETs need to withstand the thermal stress of repeated power cycling, with failure leading to test disruption and inaccurate data. Conversion efficiency is also vital in minimizing operational costs.

    SemiQ is supplying its GCMX003A120S3B1-N and the GCMX003A120S7B1 QSiC™ 1200 V SiC half-bridge modules for use in 100 kW cyclers (10 x 10 kW cells with parallel connections).

    These high-speed switching MOSFET modules are highly efficient with exceptionally low switching losses, are designed with a reliable body diode, have been tested to over 1350 V and implement a rugged design with easy mounting. Each 10 kW cell will integrate 12 modules, with 120 per 100 kW per cycler.

    Dr. Timothy Han, President at SemiQ said: “Reports show that the electrification of transportation is among the most important steps that can be taken to reach net-zero. For this, the evaluation of battery performance, durability, and efficiency plays a vital role in enabling the development of longer-range, longer-life EV batteries. We’re delighted to be working with one of the world’s leading cell cyclers and this partnership is testament to the ruggedness and efficiency of our SiC technology.”

    Datasheets for the GCMX003A120S3B1-N and GCMX003A120S7B1 modules can be downloaded via the product page, here.

    Original – SemiQ

    Comments Off on SemiQ Delivers SiC MOSFET Modules for Next-Gen EV Battery Cell Cyclers Integration
  • Nexperia Introduced 1200V SiC MOSFETs in Top-Side Cooled X.PACK for Superior Thermal Performance

    Nexperia Introduced 1200V SiC MOSFETs in Top-Side Cooled X.PACK for Superior Thermal Performance

    3 Min Read

    Nexperia introduces a range of highly efficient and robust industrial grade 1200 V silicon carbide (SiC) MOSFETs with industry leading temperature stability in innovative surface-mount (SMD) top-side cooled packaging technology called X.PAK. This package, with its compact form factor of 14 mm x 18.5 mm, combines the assembly benefits of SMD with the cooling efficiency of through-hole technology, ensuring optimal heat dissipation.

    This release addresses the growing demand from a broad range of high power (industrial) applications for discrete SiC MOSFETs that harness the advantages of top-side cooling to deliver exceptional thermal performance. These switches are ideal for industrial applications such as battery energy storage systems (BESS), photovoltaic inverters, motor drives, and uninterruptible Power Supplies (UPS). Additionally, they are well-suited for electric vehicle charging infrastructure, including charge piles.

    The X.PAK package further enhances the thermal performance of Nexperia’s SiC MOSFETs by reducing the negative impacts of heat dissipation via the PCB. Furthermore, Nexperia’s X.PAK package enables low inductance for surface mount components and supports automated board assembly.

    The new X.PAK packaged devices deliver class-leading figures-of-merit (FoM) known from Nexperia SiC MOSFETs, with RDS(on) being a particularly critical parameter due to its impact on conduction power losses. However, many manufacturers concentrate on the nominal value of this parameter and neglect the fact that it can increase by more than 100% as device operating temperatures rise, resulting in significant conduction losses. Nexperia SiC MOSFETs, on the other hand, offer industry-leading temperature stability, with the nominal value of RDS(on) increasing by only 38% over an operating temperature range from 25 °C to 175 °C.

    “The introduction of our SiC MOSFETs in X.PAK packaging marks a significant advancement in thermal management and power density for high-power applications,” said Katrin Feurle, Senior Director and Head of SiC Discretes & Modules at Nexperia. “This new top-side cooled product option builds on our successful launches of discrete SiC MOSFETs in TO-247 and SMD D2PAK-7 packages. It underscores Nexperia’s commitment to providing our customers with the most advanced and flexible portfolio to meet their evolving design needs.”

    The initial portfolio includes products with RDS(on) values of 30, 40, 60 mΩ (NSF030120T2A0NSF040120T2A1NSF060120T2A0), a part with 17 mΩ will be released in April 2025. An automotive qualified SiC MOSFETs portfolio in X.PAK packaging will follow later in 2025, as well as further RDson classes like 80 mΩ.

    Original – Nexperia

    Comments Off on Nexperia Introduced 1200V SiC MOSFETs in Top-Side Cooled X.PACK for Superior Thermal Performance
  • Navitas Achieves 80 Plus Ruby Certification for AI Data Center Power Efficiency Leadership

    Navitas Achieves 80 Plus Ruby Certification for AI Data Center Power Efficiency Leadership

    3 Min Read

    Navitas Semiconductor has announced that its portfolio of 3.2kW, 4.5kW, and 8.5 kW AI data center power supply unit (PSU) designs exceed the new 80 PLUS ‘Ruby’ certification, focused on the highest level of efficiency for redundant server data center PSUs.

    The 80 PLUS certification program assesses and certifies the energy efficiency of internal PSUs in computers and servers. The ‘Ruby’ certification was announced in January 2025 by 80 PLUS’s administrating body, CLEAResult, following its endorsement by the Green Grid consortium.

    ‘Ruby’ is the most rigorous PSU efficiency standard since the ‘Titanium’ certification was released 14 years ago. In comparison, Ruby sets an additional 1% system efficiency across all load conditions, except at 50% load (which requires a 0.5% increase), to achieve a new benchmark of 96.5% efficiency. 

    This new standard offers the industry a clear path to enhanced energy efficiency, helping data centers address the evolving needs of cloud storage, commercial sectors, and the increasing pressure on the grid from AI computing. For example, every Ruby-certified 3.2 kW CRPS185 PSU can save up to 420 kilowatt-hours during a 3-year lifetime. That is the equivalent of over 400 kg of CO2 emissions.

    Navitas exceeds both Ruby and Titanium certifications on their portfolio of AI data center PSU reference designs, ranging from 3.2 kW to 8.5 kW, and are powered by high-power GaNSafe™ ICs and GeneSiC™ Gen 3 ‘Fast’ SiC MOSFETs.

    Navitas is the established leader in AI data center solutions enabled by GaN and SiC technology. In August 2023, they introduced a high-speed, high-efficiency 3.2 kW CRPS, achieving a 40% smaller size than best-in-class, legacy silicon solutions for power-hungry AI and Edge computing. This was followed by the world’s highest power density 4.5 kW CRPS, achieving a ground-breaking 137 W/in3, and efficiency of over 97%.

    In November 2024, Navitas released the world’s first 8.5 kW AI data center power supply powered by GaN and SiC that could meet 98% efficiency, complying with the Open Compute Project (OCP) and Open Rack v3 (ORv3) specifications. Additionally, Navitas created IntelliWeave, an innovative patented new digital control technique, that when combined with high-power GaNSafe and Gen 3-Fast SiC MOSFETs, enables PFC peak efficiencies to 99.3% and reduces power losses by 30% reduction compared to existing solutions.

    “Compared with Titanium, Ruby cuts the allowable PSU losses significantly and will be critical in enabling the data center industry to reduce its carbon footprint and cut operational costs,” said  Gene Sheridan, CEO and co-founder of Navitas. “With the industry set to consume 1,000 TWh annually by next year1, every percentage point improvement in efficiency represents a reduction of 10 TWh, or approximately 3.5 million tons of CO22. Advances in our GaNFast and GeneSiC products enable these targets to be met and significantly exceeded.”

    Navitas’ AI Power Roadmap and 80 PLUS Ruby-compliant demos can be viewed at the ‘Planet Navitas’ booth #1107 during the APEC 2025 conference, which takes place at Atlanta’s Georgia World Congress Center from March 16 to 20.

    Original – Navitas Semiconductor

    Comments Off on Navitas Achieves 80 Plus Ruby Certification for AI Data Center Power Efficiency Leadership