• Alpha and Omega Semiconductor Delivered New LFPAK 5x6 Highly Robust Power MOSFETs

    Alpha and Omega Semiconductor Delivered New LFPAK 5×6 Highly Robust Power MOSFETs

    2 Min Read

    Alpha and Omega Semiconductor Limited (AOS) announced its new highly robust power MOSFET LFPAK 5×6 package. AOS’s new LFPAK product offering is available in a wide range of voltages: 40V, 60V, and 100V, and it is designed to withstand harsh environments while maintaining MOSFET performance. The new devices are found in a broad range of applications such as industrial, server power, telecommunications, and solar, where high reliability is required.

    AOS’s LFPAK packaging enables higher board-level reliability due to key packaging features such as gull wing leads, which offer a ruggedized solution for board-level environmental stresses. The gull-wing leads also enable optical inspection during PCBA manufacturing. Another feature enhancement is the LFPAK’s larger copper clip, which improves electrical and thermal performance. Advantages of the large clip include improved current handling capabilities, reduced on-resistance, and better heat dispersion compared to wire bonding. A large clip also has low parasitic inductance, enabling lower spike voltage in switching applications. All these features significantly improve the robustness of the MOSFET, and utilizing AOS’s advanced shielded gate MOSFET Technology (AlphaSGT™) enables designers to find an optimized solution to achieve high reliability under the harshest environmental conditions.

    “Designers have long trusted AOS power semiconductors in their applications, and LFPAK 5×6 will expand
    solution capability,” said Peter H. Wilson, Marketing Sr. Director of the MOSFET product line at AOS.

    Original – Alpha and Omega Semiconductor

    Comments Off on Alpha and Omega Semiconductor Delivered New LFPAK 5×6 Highly Robust Power MOSFETs
  • Infineon Technologies Expands Gen 7 TRENCHSTOP™ IGBT7 Product Family with CIPOS™ Maxi IPM

    Infineon Technologies Expands Gen 7 TRENCHSTOP™ IGBT7 Product Family with CIPOS™ Maxi IPM

    2 Min Read

    Infineon Technologies AG expands its 7th generation TRENCHSTOP™ IGBT7 product family with the CIPOS™ Maxi Intelligent Power Module (IPM) series for low-power motor drives. The new IM12BxxxC1 series is based on the new TRENCHSTOP IGBT7 1200 V and rapid diode EmCon 7 technology. Thanks to the latest micro-pattern trench design, it offers exceptional control and performance.

    This results in significant loss reduction, increased efficiency, and higher power density. The portfolio includes three new products in variants ranging from 10 A to 20 A for power ratings of up to 4.0 kW: IM12B10CC1, IM12B15CC1 and IM12B20EC1.

    The IM12BxxxC1 series is packaged in a DIP 36x23D housing. It integrates various power and control components to increase reliability, optimize PCB size and reduce system costs. This makes it the smallest package for 1200 V IPMs with the highest power density and best performance in its class. The IM12BxxxC1 series is particularly suitable for low-power drives in applications such as motors, pumps, fans, heat pumps and outdoor fans for heating, ventilation, and air conditioning.

    The new IPM series offers an isolated dual-in-line molded housing for excellent thermal performance and electrical isolation. It also meets the EMI and overload protection requirements of demanding designs. In addition to the protection features, the IPM is equipped with an independent UL-certified temperature thermistor.

    The CIPOS™ Maxi integrates a rugged 6-channel SOI gate driver to provide built-in dead time to prevent damage from transients. It features under-voltage lockout at all channels and over-current shutdown. With its multi-function pin, this IPM allows for high design flexibility for various purposes. The low side emitter pins can be accessed for all phase current monitoring making the device easy to control. 

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Expands Gen 7 TRENCHSTOP™ IGBT7 Product Family with CIPOS™ Maxi IPM
  • MCC Semi Introduced 600V N-channel SJ MOSFETs

    MCC Semi Introduced 600V N-channel SJ MOSFETs

    1 Min Read

    MCC Semi introduced two 600V N-channel MOSFETs with superjunction (SJ) technology. Engineered for maximum efficiency, MSJPFR20N60 and MSJPFFR20N60 boast a low on-resistance of 193mΩ, ensuring minimal power losses. Their integrated fast recovery diode ensures rapid recovery times, dramatically optimizing overall switching performance and circuit reliability.

    Superjunction MOSFET technology empowers these components to handle high currents while reducing thermal management needs due to minimal heat dissipation, enhancing efficient operation. Available in isolated (TO-220F) and non-isolated (TO-220AB) packages, these MOSFETs are an excellent and seamless upgrade for existing designs, as well as new products.

    For meeting the demands of modern electronics design in high-voltage switching applications, including power supplies, AC-DC converters, and motor drives, our new 600V SJ MOSFETs are the obvious solution.

    Features & Benefits:

    • Advanced superjunction (SJ) MOSFET technology reduces thermal management requirements
    • Low on-resistance of 193mΩ enhances efficiency
    • Low conduction losses due to minimal heat dissipation
    • Low gate charge improves switching speed and efficiency
    • Integrated fast recovery diode empowers high-speed switching
    • Seamless integration with non-isolated TO-220AB and isolated TO-220F packages

    Original – Micro Commercial Components

    Comments Off on MCC Semi Introduced 600V N-channel SJ MOSFETs
  • Toshiba Expanded Lineup of 600V N-channel Power Super Junction MOSFETs

    Toshiba Expanded Lineup of 600V N-channel Power Super Junction MOSFETs

    2 Min Read

    Toshiba Electronic Devices & Storage Corporation has expanded its lineup of 600V N-channel power MOSFETs “DTMOSVI series” fabricated with Toshiba’s latest-generation process, with a super junction structure. These new products are suitable for high efficiency switching power supplies used for data centers and power conditioners of photovoltaic generators. Nine products of “TK40N60Z1, TK080N60Z1, TK080A60Z1, TK085V60Z1, TK125N60Z1, TK125A60Z1, TK130V60Z1, TK155A60Z1 and TK165V60Z1” have been added to the lineup in terms of packages and drain-source On-resistance.

    By optimizing the gate design and process, 600V DTMOSVI series products have reduced the value of drain-source On-resistance per unit area by approximately 13%, and drain-source On-resistance × gate-drain charge ―the figure of merit for MOSFET performance― by approximately 52% compared to Toshiba’s current generation DTMOSIV-H series products with the same drain-source voltage rating. This means new products have a better trade-off between conduction loss and switching loss than current products. New products of DTMOSVI series will contribute improving efficiency of power supplies.

    Toshiba offers tools that support circuit design for switching power supplies. Alongside the G0 SPICE model, which verifies circuit function in a short time, highly accurate G2 SPICE models that accurately reproduce transient characteristics are now available.

    Toshiba will continue to expand its DTMOSVI series lineup, and support energy conservation by reducing power loss in switching power supplies.

    Original – Toshiba

    Comments Off on Toshiba Expanded Lineup of 600V N-channel Power Super Junction MOSFETs
  • WeEn Unveiled Second Generation Super Junction MOSFET

    WeEn Unveiled Second Generation Super Junction MOSFET

    3 Min Read

    According to a survey by Global Market Insights, Super Junction MOSFETs captured over 30% market share in the energy and power sector in 2023. Their applications span multiple domains, including electric vehicle charging stations, server and data center power supplies, LED drivers, solar inverters and home appliance controls.

    The global Super Junction MOSFET market is projected to achieve a compound annual growth rate (CAGR) exceeding 11.5% by 2032. Super Junction MOSFETs offers robust assurance to customers seeking exceptional performance and stability backed by WeEn’s well-established reliability standards, comprehensive supply chain systems and continuously evolving technological roadmaps.

    WeEn currently offers two series of Super Junction MOSFETs: G1 and G2. G2 Super Junction MOSFETs feature advanced design improvements, such as reduced cell pitch, low-resistance epitaxial layers, and shorter P-column depths. These innovations significantly reduce the device’s on-state resistance.

    Simultaneously, WeEn precisely controlled the charge balance of the super junction structure, ensuring excellent avalanche ruggedness and low capacitive losses. This results in a balanced, outstanding performance in both hard and soft-switching applications that demand high efficiency, reliability, and superior thermal management.

    Second-Generation Super junction MOSFET: Beginning of a New Era

    The WSJ2M60R065D is one of the flagship products in WeEn’s G2 Super Junction MOSFET lineup. Available in various packages including TO-220, TO-220F, TO-247, and TOLL. It particularly excels in terms of on-state resistance. Compared to competitors’ products, the WSJ2M60R065D maintains more stable on-state resistance across different current densities. Within its maximum continuous current range, the resistance variation does not exceed 10%. This stability provides customers with reliable performance data. Furthermore, the WSJ2M60R065D adapts well to applications with varying power requirements, demonstrating exceptional performance across diverse and complex operating environments.

    Second-Generation Super junction MOSFET: Beginning of a New Era

    WeEn’s G2 MOSFETs are at the forefront of performance, with their Figure of Merit (FOM) on par with top global competitors. While ensuring stringent yield and process control, WeEn reserves more breakdown voltage margin for customers. 600V devices approach the standards of 650V devices available on the market, thoroughly safeguarding the reliability of customer applications. Moreover, the G2 MOSFET integrates a finely tuned fast recovery body diode, with a reverse recovery time (Trr) of only 123 ns. The body diode can withstand a commutation speed of 1000 A/μs without damage. This makes the WSJ2M60R065D particularly suitable for Zero Voltage Switching (ZVS) applications in soft-switching topologies, delivering high efficiency while handling irregular operating conditions.

    However, the WSJ2M60R065D is not limited to soft-switching applications. It also demonstrates excellent performance in hard-switching applications. The WSJ2M60R065D offers significant advantages in terms of lower capacitive losses (Eoss) compared to top competitors. Additionally, its normalized ruggedness is significantly higher than the industry standard, enabling it to withstand higher overvoltage and oscillation. It also demonstrates stable and safe performance in hard-switching topologies such as Power Factor Correction (PFC) circuits.

    Second-Generation Super junction MOSFET: Beginning of a New Era

    WeEn consistently adheres to rigorous and reliable quality assessment practices. In accelerated aging tests, the company maintains a zero-tolerance policy for product failures. WeEn MOSFET products demonstrate excellent consistency in performance during high-temperature stress aging tests at 168, 500, and 1000 hours. Furthermore, WeEn conducts additional reviews of the ESD (Electrostatic Discharge) capability of the device to minimize quality issues during production, packaging, and transportation. The WSJ2M60R065D demonstrates a robust quality level with a CDM (Charged Device Model) capability exceeding 2000V and an HBM (Human Body Model) capability of over 4000V.

    Second-Generation Super junction MOSFET: Beginning of a New Era

    Original – WeEn Semiconductors

    Comments Off on WeEn Unveiled Second Generation Super Junction MOSFET
  • MCC Semi Unveiled a New 100V N-Channel MOSFET

    MCC Semi Unveiled a New 100V N-Channel MOSFET

    1 Min Read

    MCC Semi is unleashing the ultimate component for high-power switching — 100V N-Channel MOSFET, MCP2D6N10Y. Leveraging advanced split-gate-trench (SGT) technology and low on-resistance of 2.6mΩ, this MOSFET is made to slash conduction losses while enhancing thermal efficiency.

    Demanding power electronics get an extra boost of efficiency from its ultra-low junction-to-case thermal resistance of 0.6K/W. The TO-220 package only enhances its performance thanks to its high surge capability.

    An ideal combination of robust current handling, superior heat dissipation, and optimal efficiency ensures this N-channel MOSFET delivers unwavering operation in high-power applications ranging from battery management systems and motor drives to DC-DC converters.

    Features & Benefits:

    • High-performance 100V N-channel MOSFET
    • Utilizes SGT technology
    • Low on-resistance of 2.6mΩ
    • Impressive junction-to-case thermal resistance of 0.6K/W
    • Maximizes thermal efficiency and minimizes power losses
    • Excellent thermal capabilities
    • Robust current handling capacity
    • Designed for TO-220 package with high surge capability

    Original – Micro Commercial Components

    Comments Off on MCC Semi Unveiled a New 100V N-Channel MOSFET
  • Maspower Semiconductor Announced a New IGBT Module

    Maspower Semiconductor Announced a New IGBT Module

    2 Min Read

    Maspower Semiconductor announced the launch of its latest IGBT (Insulated Gate Bipolar Transistor) module, the MSG140T120HLF4. This advanced device is designed to meet the rigorous demands of high-power applications, including electric vehicle (EV) charging, string converters, industrial uninterruptible power supplies (UPS), and other power-train systems requiring high-efficiency power switching.

    Features and Specifications

    The MSG140T120HLF4 boasts a remarkable set of features that make it an ideal choice for high-voltage and high-current applications.

    • High Voltage and Current Capability: With a collector-emitter voltage (VCE) of up to 1200V and a continuous collector current (IC) of 140A at 100°C, this IGBT module can handle demanding power loads with ease.
    • Very Low Saturation Voltage: The device offers an ultra-low saturation voltage (VCE(sat)) of just 1.94V at 100A, ensuring high efficiency in power conversion.
    • High Thermal Tolerance: The maximum junction temperature (TJ) is rated at 175°C, allowing for operation in harsh environments without compromising performance.
    • Positive Temperature Coefficient: The device exhibits a positive temperature coefficient, improving thermal stability and reducing the risk of thermal runaway.
    • Fast Switching Speeds: With rapid turn-on and turn-off delays, rise times, and fall times, the IGBT module ensures high-speed switching for efficient power conversion.
    • High Power Handling: With a maximum collector current of 280A at 25°C and 140A at 100°C, this IGBT module can effortlessly handle high-current demands.
    • Tight Parameter Distribution: Ensures consistent performance across multiple units, simplifying design and manufacturing processes.
    • High Input Impedance: Minimizes gate drive requirements, reducing system complexity and cost.

    Versatile Applications

    With its exceptional electrical and thermal performance, the MSG140T120HLF4 is well-suited for a wide range of applications that require high-power switching capabilities.

    • Electric Vehicle (EV) Charging: Its high power handling capability and fast switching speeds make it ideal for EV charging stations.
    • String Converters: Suitable for solar and other renewable energy systems requiring efficient power conversion and efficient energy management.
    • Industrial UPS Systems: Ensures uninterrupted power supply to critical industrial equipment, minimizing downtime and maintaining operational continuity.
    • Other High-Power Train Applications: Suitable for a variety of high-power switching applications, including motor drives, inverters, and power conversion systems.

    Original – Maspower Semiconductor

    Comments Off on Maspower Semiconductor Announced a New IGBT Module
  • Toshiba Expands 650V Power MOSFETs Portfolio

    Toshiba Expands 650V Power MOSFETs Portfolio

    3 Min Read

    Toshiba Electronic Devices & Storage Corporation launched 650V N-channel power MOSFETs “TK068N65Z5, TK095E65Z5, TK095A65Z5, TK095V65Z5, TK115E65Z5, TK115A65Z5, TK115V65Z5 and TK115N65Z5” and added them to the lineup of Toshiba’s latest-generation DTMOSVI series with high-speed diodes (DTMOSVI (HSD)) that uses super junction structure and is suitable for high-efficiency switching power supplies for data centers and power conditioners for photovoltaic generators. Packages of the new products are TO-247, TO-220SIS, TO-220 and DFN8×8.

    The new products with the DTMOSVI (HSD) process use high-speed diodes to improve the reverse recovery characteristics important for bridge circuit and inverter circuit applications. Against Toshiba’s existing product TK090A65Z of the standard type DTMOSVI, the new product TK095A65Z5 achieves an approximately 65% reduction in reverse recovery time (trr), and an approximately 88% reduction in reverse recovery charge (Qrr) (measurement conditions: -dIDR/dt=100A/μs).

    In addition, the DTMOSVI (HSD) process improves on the reverse recovery characteristics of Toshiba’s existing products DTMOSIV series with high-speed diodes (DTMOSIV (HSD)), and has a lower drain cut-off current at high temperatures. Furthermore, the figure of merit “drain-source On-resistance × gate-drain charge” is also lower.

    The high temperature drain cut-off current of the new product TK095A65Z5 is approximately 91% lower, and the drain-source On-resistance × gate-drain charge approximately 70% lower, than in Toshiba’s existing product TK35A65W5. This advance will cut equipment power loss and help to improve efficiency.

    A reference design, “1.6kW Server Power Supply (Upgraded)“, that uses the same series product TK095N65Z5 is available on Toshiba’s website.

    Toshiba also offers tools that support circuit design for switching power supplies. Alongside the G0 SPICE model, which verifies circuit function in a short time, highly accurate G2 SPICE models that accurately reproduce transient characteristics are now available.

    Toshiba also will continue to expand its lineup of the DTMOSVI series. This will enhance switching power supply efficiency, contributing to energy-saving equipment.

    Applications

    Industrial equipment

    • Switching power supplies (data center servers, communications equipment, etc.)
    • EV charging stations
    • Power conditioners for photovoltaic generators
    • Uninterruptible power systems

    Features

    • MOSFETs with high-speed diodes in the latest-generation DTMOSVI series
    • Reverse recovery time due to high-speed diodes:
      TK068N65Z5  trr=135ns (typ.)
      TK095E65Z5, TK095A65Z5, TK095V65Z5  trr=115ns (typ.)
      TK115E65Z5, TK115A65Z5, TK115V65Z5, TK115N65Z5  trr=110ns (typ.)
    • High-speed switching time due to low gate-drain charge:
      TK068N65Z5  Qgd=22nC (typ.)
      TK095E65Z5, TK095A65Z5, TK095V65Z5  Qgd=17nC (typ.)
      TK115E65Z5, TK115A65Z5, TK115V65Z5, TK115N65Z5  Qgd=14nC (typ.)

    Original – Toshiba

    Comments Off on Toshiba Expands 650V Power MOSFETs Portfolio
  • SMC Diode Solutions Opened the Second Power Discrete Fab in China

    SMC Diode Solutions Opened the Second Power Discrete Fab in China

    8 Min Read

    SMC Diode Solutions, an American-led semiconductor design and manufacturing company, celebrated the opening of its second power discrete fab in Nanjing, China. The new facility realized volume production only 21 months after groundbreaking in September of 2022, and will begin shipments to customers in Q4 2024 for high power and high voltage rectifiers and MOSFET 6-inch and 8-inch wafers.

    This new fab marks a milestone in SMC’s growth as they further invest in the China market and the growing renewable energy sector. The new 300,000 square foot facility is set to produce 1.2 million silicon wafers and 60,000 silicon carbide wafers per year, increasing SMC’s total production by over four times. SMC’s current fab in Lukou, Nanjing currently produces 300,000 silicon wafers per year. The $3 billion RMB investment in the new fab will allow SMC to handle the end-to-end production of silicon carbide products for the first time and has created three hundred new jobs.

    “As the world moves towards using more and more renewable energy, we are thrilled to now be able to participate in the sector and be part of the solution to increase green energy usage and protect our Earth. We are very excited to have our new fab up and running and we look forward to servicing our customers’ needs better with the increased capacity.” – Dr. Yunji Corcoran, SMC chairwoman and chief executive officer.

    As Nanjing is also home to SMC’s current fab, the city was an advantageous choice for the new fab location. With their experienced management team, starting up the new fab was a seamless process, allowing production to begin not long after breaking ground. The city is also home to abundant resources and engineering talent, making it an ideal place for SMC to grow and expand.

    Power Semiconductors Weekly team had pleasure to interview Dr. Yunji Corcoran on this occasion:

    • The company history dates back to 1997. Can you tell us about some of the major milestones and your semiconductor journey so far?

    Certainly. In the early stages of our company, from 1997 until about 2014, we focused on the US and South Korean markets. We were growing steadily, but remained focused on the quality of our products. From 2014 to 2019, we began to focus on active growth, but I consider this more of a preparation stage for our company’s expansion. We investigated ways to create better products and put more of our R&D efforts into new silicon and Silicon Carbide (SiC) products. We also began strengthening our salesforce globally. From 2019 on, we started shipping our new products, both silicon and SiC. Now, we have reached our most significant milestone to date: opening our second fab and quadrupling our production capabilities. We are beginning a new phase that will focus on growing our presence in the power semiconductor market. 

    • Today we see many semiconductor companies investing a lot of energy into the automotive, renewables, and AI applications. With a wide product line and a new wafer fab to support further expansion, what are your major areas of interest and how do you see them evolve in the coming years?

    Automotive, renewables, and AI are extremely relevant markets for both our company and the overall semiconductor industry right now. AI requires a lot of power supply, so we plan to grow our power supply products in that area alongside our existing customers. Automotive and renewables are newer segments for us and the semiconductor market, but ones with incredibly high demand right now. The market is growing rapidly, so we are growing with aims to successfully compete in those areas as well. 

    Our plan is to focus on our growth within the power supply market and naturally expand into the sustainable energy market. As the world continues to prioritize clean energy, the demand for EV and renewable energy products will also grow. Since SiC products in particular meet the specific power needs of those applications, a rise in the use of SiC products seems likely. I suspect the semiconductor industry will play a crucial role in providing more clean energy globally, which we are excited to be a part of. 

    • With the new fab you plan to address both silicon and silicon carbide markets? What is your view on the growing demand for SiC and how SMC Diode Solutions plan to correspond to it?

    Yes, our new fab will produce both silicon and SiC products. Our current fab produces approximately 300,000 silicon wafers per year, but our new fab has the capability to produce a total of 1,260,000 wafers per year – 1,200,000 silicon and 60,000 SiC. We are very much focused on our silicon power products and view our SiC line as a natural extension of that. 

    The growing demand for SiC products makes perfect sense. SiC is a material with remarkable properties. It is considered a “wide bandgap” material, which means that it requires more energy to excite electrons from the valence band to the conduction band compared to standard silicon semiconductors. As a result, it offers superior performance characteristics including higher reverse voltage capabilities and greater stability at high temperatures.

    Overall, SiC-based products offer improved efficiency and reliability compared to traditional silicon counterparts. For a lot of newer applications, particularly in the sustainable energy sector, these capabilities have become more and more necessary. We see our new fab opening as a natural response to this demand, ande are increasing our capabilities to grow alongside the market.  

    • Today you have four major locations in China, South Korea, Germany and the USA. Do you plan to expand your network further?

    Yes, definitely. We consider SMC to be a global company, and have a range of operations throughout the world, including our headquarters in China and other offices in the US, Germany, South Korea, the UK, and India. As we grow and gain customers throughout the world, we will continue to establish more locations, whether they are R&D, manufacturing, packaging, or sales offices. 

    • Speaking of the network and future growth opportunities. Both of your fabs are located in Nanjing. With many companies in the US already taking advantage of the CHIPS and Science Act, do SMC Diode Solutions have any considerations to join the rest and use this chance to strengthen the US presence?

    It is exciting that governments are recognizing the importance of semiconductors through initiatives like the CHIPS and Science Act, and I think this will really bolster the industry as a whole. Right now, we’re focused on our manufacturing efforts in Asia, but are open to the possibility as we continue to grow. 

    • With the rise of the Chinese semiconductor industry and a very competitive landscape, how do you position your company and differentiate from the growing number of new entrants?

    The key thing is our products. Our products stand out for their high quality and outstanding performance. Our team’s commitment to customer service really sets us apart as well. 

    Our company also approaches the semiconductor market from a unique perspective. As a business with global locations and leadership, we deeply understand the needs of the international market. We prioritize high quality standards that the international market demands while benefiting from relatively low overall production costs, creating an ideal product for our customers. 

    • We see many companies in China, Europe, the US, shifting to the vertical structure and full integration of all processes – from growing the semiconductor boules to the packaging of the final product. What are your thoughts on such an approach and do you see it applicable for your company in the future as well?

    I’ve also noticed this trend in the industry. While I can see the benefits of this approach for some, I would not anticipate applying it within SMC. I believe in focusing our efforts on what we’re able to do best. We have specialized in design and manufacturing for over 25 years and plan to continue that. 

    We do have an existing silicon module line, so we are considering expanding into SiC modules in the future. However, for our company we believe it’s best to stay focused on the functions we currently have and prioritize delivering the highest quality product. 

    • And lastly, after the announcement of a new fab opening, many of your partners would be willing to engage in discussions to find out more. What trade shows or conferences in the second half of 2024 can they meet the company at?

    We would love to engage in those discussions as well. You can find us with our own booth at Electronica 2024 this September in Munich, Germany and the Anaheim Electronics & Manufacturing Show (AEMS 2024) in Anaheim, California this October. We will also be attending ISCRM 2024 in Raleigh, North Carolina this fall. 

    More often than not, you will find someone from our company at any major semiconductor event. Feel free to contact us at sales@smc-diodes.com for any questions or check our website updates to see where you can find us next.

    Original – SMC Diode Solutions

    Comments Off on SMC Diode Solutions Opened the Second Power Discrete Fab in China
  • WeEn Semiconductors Expands IGBT Product Portfolio

    WeEn Semiconductors Expands IGBT Product Portfolio

    2 Min Read

    WeEn Semiconductors announced an expansion to its range of high-performance and rugged IGBTs. Offering voltage ratings of 650V and 1200V, the new devices incorporate a fast recovery anti-parallel diode and boast extremely low leakage currents and exceptional conduction and switching characteristics at both high and low junction temperatures.

    Based on an advanced fine trench gate field-stop (FS) technology, the new IGBTs provide a more uniform electric field within the chip, support higher breakdown voltages and offer improved dynamic control. By offering the optimum trade-off between conduction and switching losses, as well as an enhanced EMI design, the devices will maximize efficiency in a wide variety of mid- to high-switching-frequency power conversion designs.

    The new IGBTs offer ratings of 650V/75A, 1200V/40A and 1200V/75A and are supplied in TO247 or TO247-4L packages depending on the selected device. All of the devices will operate with a maximum junction temperature (Tj) of 175 °C and have undergone high-voltage H3TRB (high-humidity, high-temperature and high-voltage reverse bias) and 100%-biased HTRB (high-temperature reverse bias) tests up to this maximum.

    Target applications for the new WeEn IGBTs include solar inverters, motor control systems, uninterruptible power supplies (UPS) and welding. A positive temperature coefficient simplifies parallel operation in applications where higher performance is required, while options for bare die, discrete and module product variants provide flexibility for a wide variety of target designs.

    Original – WeEn Semiconductors

    Comments Off on WeEn Semiconductors Expands IGBT Product Portfolio