• Leapers Semiconductor Delivers New Family of 1,4kV SiC Power Modules

    Leapers Semiconductor Delivers New Family of 1,4kV SiC Power Modules

    2 Min Read

    Today some applications tend to increase bus voltage, and using 1200V SiC power modules can no longer correspond to voltage requirements. Using 1700V SiC devices can solve the problem, but it comes with a price.

    Leapers Semiconductor announced a new series of 1400V SiC power modules in already familiar E0 and ED3S packages. They are the perfect solution to the mentioned problem, providing great performance at affordable price.

    At the moment the new series 1400V SiC modules come in Half-Bridge, H-Bridge, and Boost topologies.

    Leapers Semiconductor new SiC product family features:

    –       1,4kV voltage
    –       50 – 600A current
    –       3,2 – 40 mOhm Rds(on)
    –       Epoxy resin
    –       Si3N4 AMB substrate
    –       Low thermal resistance
    –       Low switching losses

    First batches of 1400V SiC power modules successfully passed field tests by the end customers and soon will be mass used in:

    –       DC fast chargers
    –       Commercial EVs
    –       Power supplies for production of hydrogen
    –       DC/DC converters

    Original – Leapers Semiconductor

    Comments Off on Leapers Semiconductor Delivers New Family of 1,4kV SiC Power Modules
  • Solitron Devices Introduced 1200V Ultra-low RDS(on) Hermetically Sealed SiC Power Module

    Solitron Devices Introduced 1200V Ultra-low RDS(on) Hermetically Sealed SiC Power Module

    2 Min Read

    Solitron Devices announced the introduction of the SD11487, the industry’s first hermetically sealed Silicon Carbide (SiC) Power Module for high reliability applications.   

    With a unique hermetic packaging format, the 51mm x 30mm x 8mm outline is the smallest hermetically sealed high reliability, high voltage, half-bridge on the market. The integrated format maximizes power density while minimizing loop inductance. 60 mil pins for the power output stage are isolated on one side of the package to allow simple power bussing while 30 mil pins are on the opposite side for control signals. 

    The SD11487 is a half bridge configuration with two 1200V 12mΩ SiC MOSFETs.  Also included in the module are two freewheeling 1200V SiC Schottky diodes in parallel with the MOSFETs and an integrated NTC temperature sensor. Continuous drain current is specified at 95A.

    With operating temperatures of -55°C to 175°C, the SD11487 is designed for the most demanding applications such as down hole exploration; space; and avionics. The hermetically sealed copper package combined with the Alumina Nitride direct bond copper substrate provide excellent thermal conductivity as well as case isolation. The integrated temperature sensing enables high level temperature protection. 

    Silicon Carbide provides excellent switching performance versus the best-in-class silicon MOSFETs and IGBTs with minimal variation versus temperature. Higher efficiency levels than silicon due to significantly lower energy loss and reverse charge results in more switching power and less energy required in the switch-on and switch-off phase. Combined with high switching frequencies this translates to smaller magnetics significantly reducing system weight and size.

    Original – Solitron Devices

    Comments Off on Solitron Devices Introduced 1200V Ultra-low RDS(on) Hermetically Sealed SiC Power Module
  • Toshiba Launches 3,3kV800A Chopper SiC MOSFET Modules Using 3rd Generation Chips

    Toshiba Launches 3,3kV/800A Chopper SiC MOSFET Modules Using 3rd Generation Chips

    2 Min Read

    Toshiba Electronic Devices & Storage Corporation has launched chopper SiC MOSFET modules “MG800FXF1ZMS3” and ”MG800FZF1JMS3” with ratings of 3300 V and 800 A using 3rd generation silicon carbide (SiC) MOSFET and SBD chips for industrial equipment and has expanded its lineup.

    The new products MG800FXF1ZMS3 and MG800FXF1JMS3 adopt an iXPLV package with Ag sintering internal bonding technology and high compatibility with mounting. These offers low conduction loss with low drain-source on-voltage (sense) of 1.3 V (typ.), and also offers low switching loss with low turn-on switching loss of 230 mJ (typ.) and low turn-off switching loss of 230 mJ (typ.). These contribute to reducing the power loss of equipment and the size of cooling device. 

    The lineup of Toshiba’s MOSFET modules of iXPLV package has three products, including existing product MG800FXF2YMS3 (3300 V / 800 A / Dual SiC MOSFET module.) This provides a wide range of product selection. This can be used in 2-level inverters, buck/boost converters and 3-level inverters.

    Toshiba will continue to meet the market needs for high efficiency and the downsizing of industrial equipment.

    Applications

    Industrial equipment

    • Inverters and converters for railway vehicles
    • Renewable energy power generation systems
    • Motor control equipment for industrial equipment, etc.

    Features

    • Low drain-source on-voltage (sense):
      VDS(on)sense=1.3 V (typ.) (ID=800 A, VGS=+20 V, Tch=25 °C)
    • Low turn-on switching loss:
      Eon=230 mJ (typ.) (VDD=1800 V, ID=800 A, Tch=175 °C)
    • Low turn-off switching loss:
      Eoff=230 mJ (typ.) (VDD=1800 V, ID=800 A, Tch=175 °C)

    Original – Toshiba

    Comments Off on Toshiba Launches 3,3kV/800A Chopper SiC MOSFET Modules Using 3rd Generation Chips
  • ROHM Expanded the Library of SPICE Model Lineup 

    ROHM Expanded the Library of SPICE Model Lineup 

    2 Min Read

    ROHM has expanded the library of SPICE model lineup for LTspice® of its circuit simulator. LTspice® is also equipped with circuit diagram capture and waveform viewer functions that make it possible for designers to check and verify in advance whether the circuit operation has been achieved as designed.

    In addition to the existing lineup of bipolar transistors, diodes, and MOSFETs, ROHM has added SiC power devices and IGBTs that increases its number of LTspice® models to more than 3,500 for discretes (which can be downloaded from product pages). This brings the amount of coverage of LTspice® models on ROHM’s website to over 80% of all products – providing greater convenience to designers when using circuit simulators that incorporate discrete products, now including power devices.

    In recent years, the increasing use of circuit simulation for circuit design has expanded the number of tools being utilized. Among these, LTspice® is an attractive option for a range of users, from students to even seasoned engineers at well-known companies. To support these and other users, ROHM has expanded its library of LTspice® models for discrete products.

    Besides product pages, ROHM has added a Design Models page in October that allows simulation models to be downloaded directly. Documentation on how to add libraries and create symbols (schematic symbols) is also available to facilitate circuit design and simulation execution.

    Going forward, ROHM will continue to contribute to solving circuit design issues by expanding the number of models compatible with various simulators while providing web tools such as ROHM Solution Simulator to meet growing customer needs.

    Original – ROHM

    Comments Off on ROHM Expanded the Library of SPICE Model Lineup 
  • Navitas Makes it to Forbes’ 2024 Top 50 America’s Successful Small Companies List

    Navitas Makes it to Forbes’ 2024 Top 50 America’s Successful Small Companies List

    2 Min Read

    Navitas Semiconductor secured the 49th position on Forbes’ 2024 America’s Successful Small Companies list. The ranking is recognition of the company’s growth based on strong demand for Navitas’ advanced, high-efficiency, wide bandgap (WBG) GaN and SiC power components, across growing and diverse global markets and an expanding customer base.

    Forbes evaluated Navitas on earnings growth, sales growth, return on equity, and total stock return over the preceding five years, with a specific focus on the last 12 months, including Navitas’ 115% increase in revenue (Q3’22 to Q3’23).

    Looking ahead, Navitas will host an in-person 2023 Investor Day at the company’s new Torrance HQ (with livestream), from 12:30 pm Pacific / 3:30 pm US Eastern on Tuesday 12th December. Highlights include a deep dive into four major new GaN/SiC technology platforms and focus markets, plus customer testimonials and a refresh on the $1B+ customer pipeline, plus 2024 and long-term financial outlook.

    “The top 50 ranking is great recognition by Forbes for Navitas’ growth,” said Gene Sheridan, co-founder and CEO. “GaN and SiC are accelerating the transition away from fossil fuels to ‘Electrify Our World™’ with renewable sources and efficient uses of electricity. This disruptive, displacement technology upgrades from legacy silicon chips, to make existing applications more efficient, lighter, faster charging and longer range, with lower system costs.”

    Original – Navitas Semiconductor

    Comments Off on Navitas Makes it to Forbes’ 2024 Top 50 America’s Successful Small Companies List
  • Vincotech Introduced a New Full SiC Module

    Vincotech Introduced a New Full SiC Module

    1 Min Read

    Efficiency is a big deal for heat pumps and HVAC systems that require higher power from a smaller footprint. The new Vincotech power module 1200V PIM+PFC resolves that contradiction by taking efficiency to a whole other level. Featuring a 3-phase ANPFC and an inverter stage, it enables your engineers to design more deeply integrated systems that drive costs down.

    Main Benefits

    • All-in-one solution: 3-phase PFC with inverter stage in a compact flow1 housing allows for more compact designs and higher power density
    • AN-PFC with SiC MOSFETs and SiC diodes for up to 200 kHz: remarkably efficient topology brings down system costs
    • Thin Al2O3 substrate facilitates overall thermal design
    • Inverter stage featuring SiC MOSFETs for high-frequency switching
    • Integrated thermal sensor simplifies temperature measurement

    Applications

    • Embedded Drives
    • HVAC, Heatpumps

    Original – Vincotech

    Comments Off on Vincotech Introduced a New Full SiC Module
  • Coherent Closed $1 billion Investment by DENSO and Mitsubishi Electric

    Coherent Closed $1 billion Investment by DENSO and Mitsubishi Electric

    3 Min Read

    Coherent Corp. announced that it has closed the $1 billion aggregate investment by DENSO CORPORATION and Mitsubishi Electric Corporation in Coherent’s silicon carbide semiconductor business.

    Under the terms of the transaction announced on October 10, 2023, DENSO and Mitsubishi Electric each invested $500 million in exchange for a 12.5% non-controlling ownership interest in the Business, with Coherent owning the remaining 75%. Coherent has separated and contributed the Business to a new subsidiary that will operate the Business. Going forward, all operating and capital expenses of the Business will be funded by the Business. Coherent will control and operate the Business, which will continue to be led by Sohail Khan, Executive Vice President, Wide-Bandgap Electronics.

    In connection with the transaction, the Business has entered into arm’s-length long-term supply arrangements with DENSO and Mitsubishi Electric that support their demand for 150 mm and 200 mm silicon carbide (SiC) substrates and epitaxial wafers.

    “As I mentioned in October, we are excited to expand our strategic relationships with DENSO and Mitsubishi Electric to capitalize on the significant demand for silicon carbide,” said Dr. Vincent D. Mattera, Jr., Chair and CEO, Coherent.

    “I believe that such a close relationship with two leaders in SiC power devices and modules is the best path forward to maximize shareholder value and position the Business for long-term growth. The investments from our strategic partners will be used to accelerate our capacity expansion plans and help sustain our leadership position, while ensuring the development of a robust and scalable supply for the rapidly growing market for SiC-based power electronics, largely driven by the explosive growth of the global electric vehicle market.”

    “Through this strategic relationship with Coherent, we will secure a stable procurement of SiC wafers, which are critical for battery electric vehicles, and contribute to the realization of a carbon-neutral society by promoting the widespread adoption of BEVs in all regions around the world,” said Shinnosuke Hayashi, President & COO, Representative Member of the Board at DENSO.

    Dr. Masayoshi Takemi, Executive Officer, Group President, Semiconductor & Device for Mitsubishi Electric, said, “We are pleased that this investment has been successfully completed. Going forward, we will further strengthen our collaboration with Coherent, leveraging their capabilities in development and manufacturing of SiC substrates, to achieve solid growth of our SiC power device business and contribute to a more sustainable world through decarbonization.”

    When incorporated into electric vehicles and industrial infrastructure, SiC-based power electronics have demonstrated the potential to significantly reduce carbon dioxide emissions and accelerate the transition to a cleaner and more energy-efficient world.

    Market estimates indicate that the SiC total addressable market will grow from $3 billion in 2022 to $21 billion in 2030, representing a 28% compound annual growth rate.

    The transaction builds on Coherent’s more than two decades of demonstrated leadership in SiC materials. In recent years, the Company has aggressively invested to scale its manufacturing of 150 mm and 200 mm substrates to address this underserved market.

    Over the past two years, Coherent has invested aggressively in capital and R&D for SiC. The closing of this $1 billion combined investment into the Business will accelerate the Company’s capital plans in the coming years. Specifically, the investment will fund the manufacturing expansion of the Business and, in combination with the concurrent supply agreements, enhance its position in the market.

    The transaction enables Coherent to increase its available free cash flow to provide greater financial and operational flexibility to execute its capital allocation priorities, as it expects the aggregate $1 billion investment will be used to fund future capital expenditure requirements of the Business.

    Original – Coherent

    Comments Off on Coherent Closed $1 billion Investment by DENSO and Mitsubishi Electric
  • Nexperia Announced Its First SiC MOSFETs in 3-pin TO-247 Package

    Nexperia Announced Its First SiC MOSFETs in 3-pin TO-247 Package

    3 Min Read

    Nexperia announced its first silicon carbide (SiC) MOSFETs with the release of two 1200 V discrete devices in 3-pin TO-247 packaging with RDS(on) values of 40 mΩ and 80 mΩ. NSF040120L3A0 and NSF080120L3A0 are the first in a series of planned releases which will see Nexperia’s SiC MOSFET portfolio quickly expand to include devices with a variety of RDS(on) ​​​​​​​ values in a choice of through-hole and surface mounted packages.

    This release addresses the market demand for the increased availability of high performance SiC MOSFETs in industrial applications including electric vehicle (EV) charging piles, uninterruptible power supplies (UPS) and inverters for solar and energy storage systems (ESS).

    “With these inaugural products, Nexperia and Mitsubishi Electric wanted to bring true innovation to a market that has been crying out for more wide-bandgap device suppliers”, according to Katrin Feurle, Senior Director & Head of Product Group SiC at Nexperia. “Nexperia can now offer SiC MOSFET devices which offer best-in-class performance across several parameters, including high RDS(on) temperature stability, low body diode voltage drop, tight threshold voltage specification as well as a very well-balanced gate charge ratio making the device safe against parasitic turn on. This is the opening chapter in our commitment to producing the highest quality SiC MOSFETs in our partnership with Mitsubishi Electric. Together we will undoubtedly push the boundaries of SiC device performance over the coming years”.

    “Together with Nexperia, we’re thrilled to introduce these new SiC MOSFETs as the first product of our partnership”, says Toru Iwagami, Senior General Manger, Power Device Works, Semiconductor & Device Group in Mitsubishi Electric. “Mitsubishi Electric has accumulated superior expertise of SiC power semiconductors, and our devices deliver a unique balance of characteristics.”

    RDS(on) is a critical performance parameter for SiC MOSFETs as it impacts conduction power losses. Nexperia identified this as a limiting factor in the performance of many currently available SiC devices and used its innovative process technology to ensure its new SiC MOSFETs offer industry-leading temperature stability, with the nominal value of RDS(on) increasing by only 38% over an operating temperature range from 25°C to 175°C. Unlike other many currently available SiC devices in the market.

    Nexperia’s SiC MOSFETs also exhibit the very low total gate charge (QG), which brings the advantage of lower gate drive losses. Furthermore, Nexperia balanced gate charge to have an exceptionally low ratio of QGD to QGS, a characteristic which increases device immunity against parasitic turn-on. 

    Together with the positive temperature coefficient of SiC MOSFETs, Nexperia’s SiC MOSFETs offers also ultra-low spread in device-to device threshold voltage, VGS(th), which allows very well-balanced current-carrying performance under static and dynamic conditions when devices are operated in parallel. Furthermore, low body diode forward voltage (VSD) is a parameter which increases device robustness and efficiency, while also relaxing the dead-time requirement for asynchronous rectification and free wheel operation. 

    Nexperia is also planning the future release of automotive grade MOSFETs. The NSF040120L3A0 and NSF080120L3A0 are available in production quantities now. Please contact Nexperia sales representatives for samples of the full SiC MOSFET offering.

    Original – Nexperia

    Comments Off on Nexperia Announced Its First SiC MOSFETs in 3-pin TO-247 Package
  • onsemi Opened a Test Lab in Slovakia to Advance System Solutions for xEVs and EI

    onsemi Opened a Test Lab in Slovakia to Advance System Solutions for xEVs and EI

    2 Min Read

    onsemi opened an application test lab in Piestany, Slovakia, focused on the advancement of system solutions for battery/plug-in hybrid/electric vehicles (xEVs) and energy infrastructure (EI) power conversion systems. The state-of-the-art systems applications lab provides specialized equipment to develop and test next-generation silicon (Si) and silicon carbide (SiC) semiconductor solutions in collaboration with automotive OEMs, Tier 1s and EI providers.

    Modern semiconductor devices are essential for highly efficient power conversion in xEV powertrains and charging, as well as applications in renewable energy. The new lab will play a central role in ensuring that the development of future power products results in highly differentiated, value-add solutions tailored to customers’ specific requirements.

    The new facility consists of two high-voltage power labs that focus on systems and device level development as well as evaluation of SiC/Si traction inverters and ACDC/DCDC power converters. Laser welding facilities, mechanical clean rooms and workshops further enable fast prototyping and testing of next-generation system solutions.

    Evaluation capabilities for the next-generation system solutions include:

    • Continuous 24/7 testing
    • Internally developed and patented software and hardware solutions to support high-voltage power cycling via space vector modulation (SVM) and sinusoidal pulse width modulation (SPWM)
    • High-accuracy logging devices for assessing SiC and Si health and reliability
    • Simulation of the harsh conditions faced by inverters during operation, testing liquid-cooled devices at temperatures as low as minus 50 degrees C and up to 220 degrees C
    • Wider range of industry-recognized software allows for the programing of FPGAs and ARM microcontrollers on site, as well as qualification testing, data analysis and 3D modeling

    Original – onsemi

    Comments Off on onsemi Opened a Test Lab in Slovakia to Advance System Solutions for xEVs and EI
  • Infineon Expands Portfolio of Its CoolSiC 1.2kV and 2kV MOSFET Modules

    Infineon Expands Portfolio of Its CoolSiC 1.2kV and 2kV MOSFET Modules

    2 Min Read

    Infineon Technologies AG announced the expansion of its CoolSiC 1200 V and 2000 V MOSFET module families with a new industry-standard package. The proven 62mm device is designed in half-bridge topology and is based on the recently introduced and advanced M1H silicon carbide (SiC) MOSFET technology.

    The package enables the use of SiC for mid-power applications from 250 kW – where silicon reaches the limits of power density with IGBT technology. Compared to a 62mm IGBT module, the list of applications now additionally includes solar, server, energy storage, EV charger, traction, commercial induction cooking and power conversion systems.

    The M1H technology enables a significantly wider gate voltage window, ensuring high robustness to driver and layout-induced voltage spikes at the gate without any restrictions even at high switching frequencies. In addition to that, very low switching and transmission losses minimize cooling requirements.

    Combined with a high reverse voltage, these devices meet another requirement of modern system design. By using Infineon’s CoolSiC chip technology, converter designs can be made more efficient, the nominal power per inverter can be increased and system costs can be reduced.

    With baseplate and screw connections, the package features a very rugged mechanical design optimized for highest system availability, minimum service costs and downtime losses. Outstanding reliability is achieved through high thermal cycling capability and a continuous operating temperature (T vjop) of 150°C. The symmetrical internal package design provides identical switching conditions for the upper and lower switches. Optionally, the thermal performance of the module can be further enhanced with pre-applied thermal interface material (TIM).

    The CoolSiC 62mm package MOSFETs are available in 1200 V variants of 5 mΩ/180 A, 2 mΩ/420 A and 1 mΩ/560 A. The 2000 V portfolio will include the 4 mΩ/300 A and 3 mΩ/400 A variants. The portfolio will be completed in Q1 2024 with the 1200 V/3 mΩ and 2000 V/5 mΩ variants.

    An evaluation board is available for rapid characterization of the modules (double pulse/continuous operation). For ease of use, it provides flexible adjustment of the gate voltage and gate resistors. At the same time, it can be used as a reference design for driver boards for volume production.

    Original – Infineon Technologies

    Comments Off on Infineon Expands Portfolio of Its CoolSiC 1.2kV and 2kV MOSFET Modules