-
LATEST NEWS / PROJECTS / Si / TOP STORIES3 Min Read
DENSO CORPORATION (DENSO), a leading mobility supplier, and United Semiconductor Japan Co., Ltd. (“USJC”), a subsidiary of global semiconductor foundry United Microelectronics Corporation (“UMC”), announced a joint collaboration to produce insulated gate bipolar transistors (IGBT), which have entered mass production at the 300mm fab of USJC. A first shipment ceremony was held last week to mark this important milestone. It comes just one year after the companies announced a strategic partnership for this critical power semiconductor used in electric vehicles.
As adoption of electric vehicles accelerates, automakers are seeking to boost powertrain efficiency while also increasing cost-effectiveness of electrified vehicles. The jointly invested line at USJC supports the production of a new generation of IGBT developed by DENSO, which offers 20% reduction in power losses compared with earlier generation devices. Production is expected to reach 10,000 wafers per month by 2025.
The ceremony was held at USJC’s fab in Mie Prefecture, Japan. Attendees included by DENSO President Koji Arima, UMC Co-President Jason Wang, USJC President Michiari Kawano, Director-General of the Commerce and Information Policy Bureau at Japan’s Ministry of Economy, Trade and Industry (METI) Satoshi Nohara, Governor of Mie Prefecture Katsuyuki Ichimi, and Mayor of Kuwana City Narutaka Ito.
“Today, we are thrilled to welcome a memorable shipping ceremony that symbolizes the partnership between DENSO, UMC and USJC. We are from different cultures such as semiconductor industry and automobile industry. However, we have worked steadily with mutual respect which is a source of our strong competitiveness. DENSO, together with our trusted partners, will continue to further accelerate electrification through the production of competitive semiconductors in order to preserve the global environment and create a society full of smiles,” said Koji Arima, President of DENSO.
“USJC is proud to be the first semiconductor foundry in Japan to manufacture IGBT on 300mm wafers, offering customers greater production efficiency than the standard fabrication on 200mm wafers. Thanks to our dedicated teams and support from DENSO, we were able to complete trial production and reliability testing without delay and honor the mass production date as agreed with the customer,” said Michiari Kawano, President of USJC.
“It is an honor to be a strategic partner of DENSO, a leading automotive solution provider to global automakers. This collaboration fully demonstrates UMC’s manufacturing capability and our collaborative approach to ensure the success of our foundry customers,” said Jason Wang, Co-President of UMC. “The electrification and automation of cars will continue to drive up semiconductor content, particularly for chips manufactured using specialty foundry processes on 28nm and above nodes. As a specialty technology leader, UMC is well positioned to play a bigger role in the automotive value chain and enabling our partners to capture opportunities and win market share in this rapidly evolving industry.
Original – DENSO
-
LATEST NEWS / PROJECTS / SiC / TOP STORIES / WBG2 Min Read
Infineon Technologies AG, the global leader in automotive semiconductors, and Hon Hai Technology Group (“Foxconn”), the world’s largest electronics manufacturing services provider, aim to establish a long-term partnership in the field of electric vehicles (EV) to jointly develop advanced electromobility with efficient and intelligent features. The Memorandum of Understanding (MoU) focuses on silicon carbide (SiC) development, leveraging Infineon’s automotive SiC innovations and Foxconn’s know-how in automotive systems.
“The automotive industry is evolving. With the rapid growth of the EV market and the associated need for more range and performance, the development of electromobility must continue to advance and innovate,” said Peter Schiefer, President of the Infineon Automotive Division. “Infineon’s commitment and passion for innovation and zero-defect quality has made us the best partner for our customers. We look forward to writing a new chapter in electromobility together with Foxconn.”
“We are pleased to be working with Infineon and are confident that this collaboration will result in optimized architecture, product performance, cost competitiveness and high system integration to provide customers with the most competitive automotive solutions,” said Jun Seki, Foxconn’s Chief Strategy Officer for EVs.
According to the MoU, the two companies will collaborate on the implementation of SiC technology in automotive high-power applications like traction inverters, onboard chargers, and DC-DC converters. Both parties intend to jointly develop EV solutions with outstanding performance and efficiency based on Infineon’s automotive system understanding, technical support and SiC product offerings combined with Foxconn’s electronics design and manufacturing expertise and the capability of system-level integration.
In addition, the two companies plan to establish a system application center in Taiwan to further expand the scope of their cooperation. This center will focus on optimizing vehicle applications, including smart cabin applications, advanced driver assistance systems and autonomous driving applications. It will also address electromobility applications such as battery management systems and traction inverters. The collaboration covers a wide range of Infineon’s automotive products, including sensors, microcontrollers, power semiconductors, high-performance memories for specific applications, human machine interface and security solutions. The system application center is expected to be established within 2023.
Original – Infineon Technologies
-
LATEST NEWS / PROJECTS / SiC / TOP STORIES / WBG3 Min Read
As part of their strategic partnership announced earlier this year, ZF Friedrichshafen AG, a leading global technology company of next generation mobility, and Wolfspeed Inc, the global leader in Silicon Carbide technology, announced their plans to establish a joint European R&D center for Silicon Carbide power electronics in the Nuremberg Metropolitan Region.
The new joint research facility is supported by the German federal government and the regional government of Bavaria. Like the planned Wolfspeed Silicon Carbide chip factory in Ensdorf, Saarland, funding for the new center is subject to approval by the European Commission under the EU’s Important Project of Common European Interest (IPCEI) scheme, as well as antitrust authorities. The aim is to develop the two facilities to become the cornerstone of a new European Silicon Carbide technology network.
Construction will begin after IPCEI funding approval has been secured for both projects, which is expected later this year. The goal of the collaboration is to develop breakthrough innovations for Silicon Carbide systems, products, and applications, covering the full value chain from module to complete systems and thus reducing time-to-market significantly. The joint research center will target requirements in all mobility segments including consumer, commercial, agricultural, and industrial vehicles, as well as in the industrial and renewable energy markets. The collaboration aims to drive improvements such as higher efficiency, increased power density and higher performance of electrification solutions. Wolfspeed’s Silicon Carbide expertise and ZF’s access to all mobility segments allows for a fast and seamless transition of new technologies.
ZF and Wolfspeed are partnering with other leading organizations from the scientific and industrial communities to establish a comprehensive European Silicon Carbide technology network. To this end, ZF will use its membership in the European Center of Power Electronics (ECPE) and share key research results at the European level. Over time, the research center is planned to develop into an electronics and semiconductor campus.
“The research center is of outstanding importance for the energy and mobility transition in the EU and supports the strategic goals of Europe,” says Dr Holger Klein, CEO of ZF. “In addition, optimizing Silicon Carbide technology advances industrial transformation and strengthens the independence of European supply chains.”
“This research facility further strengthens our partnership with ZF and underlines our long-term commitment to turn our unique know-how from more than 35 years of experience in Silicon Carbide power electronics into state-of-the-art solutions for our industry partners,” comments Gregg Lowe, CEO of Wolfspeed Inc.
The strategic partnership links ZF, one of the world’s leading suppliers of electric drives, with Wolfspeed, the world’s most recognized specialist in Silicon Carbide technology. “This connection is unique and will lead to enormous advances in Silicon Carbide-based electrical systems and electric drives,” says ZF Board of Management member Stephan von Schuckmann. “This is made possible by the close networking of the research center and production, because fundamentally redesigned Silicon Carbide chips also require new production processes.”
Original – Wolfspeed
-
LATEST NEWS / PROJECTS / SiC / TOP STORIES / WBG2 Min Read
Infineon Technologies AG is diversifying its silicon carbide (SiC) supplier base and has signed a long-term agreement with Chinese SiC supplier TanKeBlue to secure additional competitive SiC sources. TanKeBlue will supply the Germany-based semiconductor manufacturer with competitive and high-quality 150-millimeter SiC wafers and boules for the manufacturing of SiC semiconductors, covering a double-digit share of the forecasted demand in the long term.
The agreement between Infineon and TanKeBlue contributes to general supply chain stability, also with regard to the growing demand for SiC semiconductor products for automotive, solar and EV charging applications and energy storage systems in the Chinese market. It will also support the rapid growth of the emerging semiconductor material SiC. The agreement will focus on 150-millimeter SiC material in the first phase, but TanKeBlue will also provide 200-millimeter SiC material to support Infineon’s transition to 200-millimeter wafer diameter.
“Infineon is significantly expanding its manufacturing capacities at its production sites in Malaysia and Austria to meet the growing demand for SiC. In order to offer the most comprehensive product range possible to our customers, Infineon is currently doubling down on its investments in SiC technology and product portfolio. In this context, we are implementing a multi-supplier and multi-country sourcing strategy to increase resilience to the benefit of our broad customer base,” said Angelique van der Burg, Chief Procurement Officer at Infineon. “TanKeBlue provides excellent material performance and we are pleased to sign a competitive agreement with them.”
“We welcome the opportunity to team up with our customer Infineon, a global leader in power semiconductors. TanKeBlue plans to continuously improve its SiC material and develop its next generation of 200-millimeter wafer technology. We value Infineon as an excellent customer in this regard,” said Yang Jian, CEO of TanKeBlue.
Infineon is currently expanding its SiC manufacturing capacity in order to achieve its target of a 30 percent global market share by the end of the decade. Infineon’s SiC manufacturing capacity will increase tenfold by 2027. A new plant in Kulim, Malaysia is scheduled to start production in 2024, adding to Infineon’s manufacturing capacities in Villach, Austria. Today, Infineon already provides SiC semiconductors to more than 3,600 automotive and industrial customers worldwide.
Original – Infineon Technologies
-
LATEST NEWS / PROJECTS / SiC / TOP STORIES / WBG2 Min Read
Infineon Technologies AG has signed an agreement with Chinese silicon carbide (SiC) supplier SICC to diversify Infineon’s SiC material supplier base and to secure additional competitive SiC sources. Under the agreement, SICC will supply the Germany-based semiconductor manufacturer with competitive and high-quality 150-millimeter wafers and boules for the manufacturing of SiC semiconductors, covering a double-digit share of the forecasted demand in the long term.
The agreement will focus in the first phase on 150-millimeter SiC material, but SICC SiC material supply will also support Infineon’s transition to 200-millimeter wafer diameter. This will generally contribute to supply chain stability, in particular with regard to the growing demand for SiC semiconductor products for automotive, solar and EV charging applications as well as energy storage systems in the Chinese market, and will generally support the rapid growth of the emerging semiconductor material SiC.
“Infineon is significantly expanding its manufacturing capacities at its production sites in Malaysia and Austria in order to serve the growing SiC demand. In this context, we are implementing a multi-supplier and multi-country sourcing strategy to increase resilience for the benefit of our broad customer base and are securing new competitive top-quality sources globally, matching the highest standards in the market,” said Angelique van der Burg, Chief Procurement Officer at Infineon.
“SICC’s substrates are widely used in the Power SiC field. We are pleased to team up with Infineon as our customer, a global leader in power semiconductors. SICC will continuously expand capacity to add more value for its global customers. We value Infineon as an excellent leading strategic customer and we look forward to jointly enhancing SiC industry development and promoting global digitalization, low-carbonization, and sustainable development,” said Zong Yanmin, CEO of SICC.
Infineon is currently expanding its SiC manufacturing capacity in order to achieve its target of a 30 percent global market share by the end of the decade. Infineon’s SiC manufacturing capacity will increase tenfold by 2027. A new plant in Kulim, Malaysia is scheduled to start production in 2024, adding to Infineon’s manufacturing capacities in Villach, Austria. Today, Infineon already provides SiC semiconductors to more than 3,600 automotive and industrial customers worldwide.
Original – Infineon Technologies
-
LATEST NEWS / PROJECTS / TOP STORIES4 Min Read
Infineon Technologies AG has broken ground for a new plant in Dresden together with political leaders from Brussels, Berlin and Saxony. EU Commission President Ursula von der Leyen, German Federal Chancellor Olaf Scholz, Saxony’s Prime Minister Michael Kretschmer and Dresden’s Mayor Dirk Hilbert symbolically launched construction work together with Infineon CEO Jochen Hanebeck. With an investment volume of five billion euros, the new plant is the largest single investment in Infineon’s history.
“With this groundbreaking, Infineon is launching an important contribution to the green and digital transformation of our society,” said Hanebeck. “Global semiconductor demand will grow strongly and persistently in view of the high demand for renewable energies, data centers and electromobility. Our new plant will serve our customers’ demands in the second half of the decade. Together, we are driving decarbonization and digitalization.”
“In times of increasing geopolitical risks, it is great news for Europe that Infineon is investing massively in semiconductor manufacturing in Dresden”, said von der Leyen. “We need more such projects in Europe as demand for microchips will continue to rise rapidly. The EU Commission and member states are mobilizing 43 billion euros over the next few years under the European Chips Act to create a stronger and more resilient Europe in the digital domain.”
“Chips are the basis of any essential transformation technology – from wind farm to charging station. We welcome Infineon’s continued investment in Germany and thus further strengthening our country as one of the world’s most important semiconductor locations,” Scholz emphasized on the occasion of the groundbreaking event. “Chips made in Dresden help secure jobs and make our industry – from midsize companies to large corporations – more resilient. Dresden is where the components are created, that are needed for upcoming investments in green technologies.”
“Infineon’s investment will strengthen Europe, Germany and Saxony as an economic location,” says Kretschmer. “The construction of the new plant will both secure and create high-value jobs in Dresden. At the same time the attractiveness of Silicon Saxony as a center of expertise for the global semiconductor industry is increasing. For years, the state of Saxony has been supporting this unique ecosystem by investing in science.”
In addition, the investment by Infineon strengthens the manufacturing basis for the semiconductors that drive decarbonization and digitalization. Analog/mixed-signal components are used in power supply systems, for example in energy-efficient charging systems, small automotive motor control units, in data centers and in applications for the Internet of Things (IoT). The interaction of power semiconductors and analog/mixed-signal components makes it possible to create particularly energy-efficient and intelligent system solutions.
Expansion of production capacities at the existing Dresden site will let Infineon complete the project quickly and will also generate considerable effects of scale. Manufacturing activities are planned to begin in fall 2026. The expansion will create approximately 1,000 highly qualified jobs. Preparatory measures are currently taking place at the site of the new plant; the start of shell construction is planned for fall 2023.
The plant will be equipped with the latest in environmental technologies and will be among the most environmentally friendly manufacturing facilities of its kind. Thanks to advanced digitalization and automation, Infineon is also setting new standards for manufacturing excellence in Dresden. The new plant will be closely linked with the Infineon Villach site as “One Virtual Fab”. This manufacturing complex for power electronics is based on highly efficient 300-millimeter technology and will increase efficiency levels, giving Infineon additional flexibility in order to supply its customers faster.
In February, the German Federal Ministry for Economic Affairs and Climate Action (BMWK) has approved an early project launch, meaning that construction can already begin before completion of the inspection of legal subsidy aspects by the European Commission. Subject to the European Commission’s state aid decision and the national grant procedure, the project is to be funded in accordance with the objectives of the European Chips Act. Infineon is seeking public funding of around one billion euros.
Original – Infineon Technologies
-
LATEST NEWS / PROJECTS / SiC / TOP STORIES / WBG5 Min Read
Bosch is expanding its semiconductor business with silicon carbide chips. The technology company plans to acquire assets of the U.S. chipmaker TSI Semiconductors, based in Roseville, California. With a workforce of 250, the company is a foundry for application-specific integrated circuits, or ASICs. Currently, it mainly develops and produces large volumes of chips on 200-millimeter silicon wafers for applications in the mobility, telecommunications, energy, and life sciences industries. Over the next years, Bosch intends to invest more than 1.5 billion USD in the Roseville site and convert the TSI Semiconductors manufacturing facilities to state-of-the-art processes. Starting in 2026, the first chips will be produced on 200-millimeter wafers based on the innovative material silicon carbide (SiC).
In this way, Bosch is systematically reinforcing its semiconductor business, and will have significantly extended its global portfolio of SiC chips by the end of 2030. Above all, the global boom and ramp-up of electromobility are resulting in huge demand for such special semiconductors. The full scope of the planned investment will be heavily dependent on federal funding opportunities available via the CHIPS and Science Act as well as economic development opportunities within the State of California. Bosch and TSI Semiconductors have reached an agreement to not to disclose any financial details of the transaction, which is subject to regulatory approval.
“With the acquisition of TSI Semiconductors, we are establishing manufacturing capacity for SiC chips in an important sales market while also increasing our semiconductor manufacturing, globally. The existing clean-room facilities and expert personnel in Roseville will allow us to manufacture SiC chips for electromobility on an even larger scale,” says Dr. Stefan Hartung, the chairman of the Bosch board of management. “The location in Roseville has existed since 1984. Over nearly 40 years, the U.S. company has built up vast expertise in semiconductor production. We will now be integrating this expertise into the Bosch semiconductor manufacturing network,” says Dr. Markus Heyn, member of the Bosch board of management and chairman of the Mobility Solutions business sector. “We are pleased to join a globally operating technology company with extensive semiconductor expertise. We are confident that our Roseville location will be a significant addition to Bosch’s SiC chipmaking operations,” says Oded Tal, CEO at TSI Semiconductors.
The new location in Roseville will reinforce Bosch’s international semiconductor manufacturing network. Starting in 2026, following a retooling phase, first SiC chips will be produced on 200-millimeter wafers in a facility offering roughly 10,000 square meters of clean-room space. At an early stage, Bosch invested in the development and production of SiC chips. Since 2021, it has been using its own proprietary, highly complex processes to mass-produce them at its Reutlingen location near Stuttgart. In the future, Reutlingen will also produce them on 200-millimeters wafers. By the end of 2025, the company will have extended its clean-room space in Reutlingen from roughly 35,000 to more than 44,000 square meters. “SiC chips are a key component for electrified mobility. By extending our semiconductor operations internationally, we are strengthening our local presence in an important electric vehicle market,” Heyn says.
Demand for chips for the automotive industry remains high. By 2025, Bosch expects to have an average of 25 of its chips integrated in every new vehicle. The market for SiC chips is also continuing to grow fast – by 30 percent a year on average. The main drivers of this growth are the global boom and ramp-up of electromobility. In electric vehicles, SiC chips enable greater range and more efficient recharging, as they use up to 50 percent less energy. Installed in these vehicles’ power electronics, they ensure that a vehicle can drive a significantly longer distance on one battery charge – on average, the possible range is 6 percent greater than with silicon-based chips.
Semiconductors are key to the success of all Bosch business areas. The company recognized the potential of this technology early on, and has been producing semiconductors for more than 60 years. Bosch is one of the few companies to have not only electronic and software expertise but also a profound understanding of microelectronics. It can combine this decisive competitive advantage with its strength in semiconductor manufacturing. The supplier of technology and services has been manufacturing semiconductors in Reutlingen since 1970. They are used both in the automotive sphere and in consumer electronics. Modern electronics in vehicles is also the basis for reducing traffic emissions, preventing road accidents, and efficient powertrains. Production at the Bosch wafer fab in Dresden (300-millimeter wafers) started in July 2021. At nearly one billion euros, the wafer fab is the biggest single investment in the company’s history.
In its wafer fabs in Reutlingen and Dresden, Bosch has invested more than 2.5 billion euros in total since 200-millimeter technology was introduced in 2010. On top of this, billions of euros have been invested in developing microelectronics. Independently of the investment now planned in the United States, the company announced in summer last year that it will be investing a further 3 billion euros in its semiconductor business in Europe, both as part of its investment planning and with the aid of the EU’s “Important Project of Common European Interest on Microelectronics and Communication Technologies” program.
Original – Bosch
-
LATEST NEWS / PRODUCT & TECHNOLOGY / PROJECTS / SiC / TOP STORIES / WBG2 Min Read
Infineon Technologies AG and Schweizer Electronic AG are collaborating on an innovative way to further increase the efficiency of chips based on silicon carbide (SiC). Both partners are developing a solution to embed Infineon’s 1200 V CoolSiC™ chips directly onto printed circuit boards (PCB). This will increase the range of electric vehicles and reduce the total system costs.
The two companies have already demonstrated the potential of this new approach: They were able to embed a 48 V MOSFET in the PCB. This resulted in a 35 percent increase in performance. SCHWEIZER contributes to this success with its innovative p²Pack® solution which enables power semiconductors to be embedded in PCBs.
“Our joint goal is to take automotive power electronics to the next level,” said Robert Hermann, Product Line Head Automotive High-Voltage Discretes and Chips, of Infineon. “The low-inductive environment of a PCB allows clean and fast switching. Combined with the leading performance of 1200 V CoolSiC™ devices, chip embedding enables highly integrated and efficient inverters that reduce overall system costs.”
“With Infineon’s 100 percent electrically tested standard cells (S-Cell), we can achieve high overall yields in the p² Pack manufacturing process,” said Thomas Gottwald, Vice President Technology at Schweizer Electronic AG. “The fast-switching characteristics of the CoolSiC chips are optimally supported by the low-inductance interconnection that can be achieved with the p² Pack. This leads to increased efficiency and improved reliability of power conversion units such as traction inverters, DC-DC converters, or on-board chargers.”
Original – Infineon Technologies
-
LATEST NEWS / PROJECTS / SiC / TOP STORIES / WBG2 Min Read
onsemi, a leader in intelligent power and sensing technologies, and premium electric mobility brand ZEEKR announced a long-term supply agreement (LTSA) between the two companies. onsemi will provide its EliteSiC silicon carbide (SiC) power devices to increase the powertrain efficiency of ZEEKR’s smart electric vehicles (EVs), resulting in improved performance, faster charging speeds and extended driving range.
To support its expanding portfolio of high-performance EVs, ZEEKR will adopt onsemi EliteSiC MOSFET, 1200V, M3E with enhanced electrical and mechanical performance and reliability. These power devices deliver improved power and thermal efficiency, which reduces the size and weight of the traction inverter and enhances the range of the automaker’s EVs.
“With cutting-edge technologies such as advanced SiC, ZEEKR will be able to offer electric vehicles with improved performance and even lower carbon emissions,” said Andy An, CEO of ZEEKR Intelligent Technology. “As a brand committed to sustainability, ZEEKR will continue to explore different ways to accelerate the transition towards new energy vehicles.”
The new LTSA will enable both companies to build a stronger supply chain relationship to support ZEEKR’s growth over the next decade.
“A reliable supply chain is critical to business success and, after significant investments in our SiC end-to-end supply chain, onsemi can offer this strategic value to customers,” said Hassane El-Khoury, president and CEO, onsemi. “This agreement will help our continued ramp of SiC operations, enabling us to offer industry-leading power devices that help our customers deploy the most efficient and highest performing EVs on the market.”
ZEEKR is a premium electric mobility brand built to address the global demand for premium EVs. Utilizing Geely’s advanced Sustainable Experience Architecture (SEA), ZEEKR develops in-house battery technologies, battery management systems, electric motor technologies and electric vehicle supply chain support.
Original – onsemi
-
LATEST NEWS / PROJECTS / Si / SiC / TOP STORIES / WBG3 Min Read
Semikron Danfoss and the Kyoto-based company ROHM Semiconductor have been collaborating for more than ten years with regards to the implementation of silicon carbide (SiC) inside power modules. Recently, Semikron Danfoss added ROHM’s new 1200V RGA IGBT to its low power module offering. In doing so, both companies show that they remain committed to serving worldwide motor drive customers’ needs.
The worldwide growth in electrification technologies has created unprecedented demand for power modules. Often, it is the chip supply that limits power module availability. Despite ongoing investments in production capacity by the chip manufacturers, the supply situation remains tight. It is against this backdrop that ROHM has introduced the new 1200V RGA IGBT, targeted as an alternative to the latest Generation 7 IGBT devices in industrial applications. ROHM is now expanding their bare die offering to Semikron Danfoss, positioning themselves as an advanced alternative to traditional chip suppliers.
“The RGA is a newly designed, light punch through, trench gate IGBT with Tj,max = 175°C. The conduction, switching, and thermal characteristics are optimized for new industrial drive applications in the low to medium power range. At the same time, the RGA is intended to remain compatible with existing IGBT solutions, enabling a multiple source approach. In addition, the RGA can also be used to improve transient overcurrent handling during overload conditions in motor drive applications,” says Kazuhide Ino, Member of the Board, Managing Executive Officer, CFO at ROHM.
Semikron Danfoss can offer the 1200V RGA IGBT in a full range of nominal current classes from 10A to 150A. This range, combined with the suitability of the RGA chip in motor drive applications, means that the MiniSKiiP family is the ideal choice for module implementation. The baseplate-less, spring-contact MiniSKiiP is already deeply embedded in the worldwide motor drive market and always equipped with the latest generation IGBTs. Therefore, it is important for this product to have an alternative IGBT source to diversify the supply chain. The uniform-height MiniSKiiP housing family is also offered on the market as a multiple source package, making an alternative IGBT a valuable option for manufacturers.
For press-fit/solder applications, the industry-standard SEMITOP E package will also be available in pin-compatible configurations to existing Generation 7 IGBT module offerings. This housing family will also offer sixpack (“GD”) and converter-inverter-brake (“DGDL”) circuit configurations.
“The power electronics industry continues to recover and learn lessons from the supply issues in recent years. It’s clear that diversification in semiconductor chip and module manufacturing is required to generate true ‘multiple source’ power modules”, says Claus A. Petersen, President, Semikron Danfoss. “In the case of 1200V Generation 7 IGBTs, a reliable equivalent from a reputable manufacturer is now available to address this issue also in the low power range. The 1200V RGA IGBT from ROHM is a perfect alternative to the Generation 7 IGBT and can be made to behave in a remarkably similar manner with small gate resistor adjustment,” continues Peter Sontheimer, Senior Vice President Industry Division & Managing Director at Semikron Danfoss.
Original – Semikron Danfoss