-
GaN / LATEST NEWS / WBG4 Min Read
Navitas Semiconductor has announced a new strategic partnership with GigaDevice, a world-leader in microcontrollers (MCUs) and flash memory, to create a joint-lab for integrating and tailoring Navitas’ GaNFast™ ICs & GigaDevice’s Microcontrollers, targeting AI data centers, EVs, Solar, and Energy Saving Systems.
As GaN & SiC power technologies transition power conversion to faster, lighter, and more compact solutions, such as single-stage BDS converters, MCUs need to be optimized to maximize these extremely fast switching characteristics, such as high processing speeds and fast I/O capabilities. A co-developed solution of Navitas’ power and GigaDevice’s control will further accelerate the adoption of GaN & SiC into higher-power markets.
The joint R&D laboratory will integrate both company’s technical product and system-level application expertise to drive innovative advancements in intelligent and efficient power management solutions. Integrating Navitas’ next-generation, clean-energy, GaNFast™ technology with GigaDevice’s advanced high-performance MCU products will enable a new level of integration, performance, and high-power-density digital-power solutions.
As a leader in China’s high-performance general-purpose MCU market, GigaDevice has been widely adopted across diverse sectors including power systems, industrial automation, automotive electronics, and motion control, with cumulative shipments exceeding 2 billion units. GigaDevice’s GD32 high-performance MCU series has been designed to use leading technology and core architecture, with higher processing power, greater storage capacity, and richer on-chip resources, to bring high-end innovative experiences to developers for industrial automation, photovoltaic energy storage, graphic displays, digital power supplies, motor control, and other diversified applications. Their expansive portfolio is complemented by comprehensive industry-specific vertical solutions, delivering exceptional products, tailored technical support, and system-level design services to customers.
Navitas is an industry leader in GaN power technology with a wide portfolio of GaNFast™ power ICs, which enable high-frequency, high-efficiency power conversion, achieving 3x more power and 3x faster charging in half the size and weight compared to prior designs with legacy silicon power devices.
Navitas technology leads across various growth markets including mobile, where they continue to supply 10 of the top 10 smartphone/notebook OEMs with Navitas GaN ICs, with the recent announcement of powering Dell’s™ Family of AI Notebooks. They are the established leader in AI data center solutions enabled by high-power GaNSafe™ and GeneSiC technology, with the world’s firsts in high-efficiency, high-power density designs, such as the 3.2 kW CRPS, achieving a 40% smaller size, world’s highest power density 4.5 kW CRPS, and the world’s first 8.5 kW AI data center power supply powered by GaN and SiC that can meet 98% efficiency, complying with the Open Compute Project (OCP) and Open Rack v3 (ORv3) specifications. For Electric Vehicles, Power Electronics News announced that Changan Automobile would launch the first commercial GaN-Based On-Board Charger (OBC) using Navitas GaN ICs.
The partnership follows Navitas’ strategy of creating an eco-system to support these next-gen, clean-energy solutions. Creating new high-speed isolated drivers, such as IsoFast, integrating ASICs with GaNSense™ ICs for lower power applications, alongside partnering with high-frequency planar magnetics for high-frequency transformers, inductors, and EMI filters, enables simple integrated ‘one-stop shop’ solutions to allow designers to innovate and accelerate these next-gen GaN/SiC-based power electronics.
On April 8th, 2025, Vincent Li, GigaDevice Senior Vice President, CTO, & General Manager of MCU Business Unit, and Charles Zha, VP and GM of Navitas Asia-Pacific, plus other senior executives attended the signing ceremony in Shanghai. Both parties shared their collaboration strategy and discussed operational models for the joint lab.
“Digital power stands as one of GigaDevice’s core strategic markets. MCUs play a pivotal role in advancing the intelligence of digital power systems, enhancing energy efficiency, and ensuring operational security.” said Vincent Li, GigaDevice Senior Vice President, CTO, and General Manager of MCU BU. “By working with Navitas, we will deeply integrate GigaDevice’s advanced MCU with Navitas’ leading GaNFast™ technology to develop competitive solutions for industrial automation and new energy vehicles. This collaboration not only technological synergy but also a critical step toward greener, more efficient industry development.”
“Navitas continues to innovate our GaNFast power IC technology to achieve our mission to ‘Electrify Our World™’”, said Charles Zha, SVP and GM of Navitas Asia-Pacific. “The joint lab with GigaDevice will amplify our complementary strengths in IC design, manufacturing, and ecosystem development and accelerate R&D for next-gen, high-efficiency power solutions, reinforcing our ‘Smart + Green’ strategic vision. We look forward to delivering faster, energy-saving innovations to global customers and pioneering a new era of collaboration in power electronics.”
Original – Navitas Semiconductor
-
GaN / LATEST NEWS / WBG3 Min Read
Navitas Semiconductor has announced its GaNSense power ICs will power GreatWall’s latest 2.5kW ultra-high power density DC-DC converter for AI data centers.
The rapid development of AI has imposed higher requirements for computing power on data centers. To accommodate more GPUs for computing, the architecture of 400V independent cabinets will become a new development trend. Module power supplies with small size, high efficiency, and greater independence will free up valuable cabinet space, directly enhance computing power, reduce energy consumption, and contribute to achieving dual-carbon goals.
Great Wall has developed an industry-leading 2.5kW DC-DC converter in 1/4 brick outline with the world’s highest power density of 92.36W/cm³, up to 8 times higher than the output power of traditional silicon designs. With a record half-load efficiency of 97.9% and a wide input range of 320-420 VDC, this solution achieves the increasingly stringent efficiency guidelines and regulations from Open Compute Project (OCP) and can be widely used in applications from AI data centers, telecommunications, and industrial equipment.
This ultra-high power density DC-DC converter is powered by Navitas’ GaNSense NV6169. The 650V, 45 mΩ, delivers 50% more power than prior designs, in an industry-standard, low-profile, low-inductance, 8 x 8 mm PQFN package for high-efficiency, high-density power systems. GaNFast power ICs with GaNSense technology feature GaN-industry-first features such as loss-less current sensing and the world’s fastest short-circuit protection, with a ‘detect-to-protect’ speed of only 30 ns, 6x faster than discrete solutions.
Unlike competing solutions, NV6169 is rated at 650V for nominal operation plus an 800 V peak-rating for robust operation during transient events. As a truly integrated power IC, the GaN gate is fully-protected and the whole device rated at an industry-leading electrostatic-discharge (ESD) specification of 2 kV.
“With its faster switching frequency and higher efficiency, GaN has become a key factor in unlocking the next generation of power supplies. We are very pleased to collaborate with Navitas, an industry leader in GaN technology, and successfully enable this industry-leading ultra-high-power density and ultra-high efficiency DC-DC converter,” said Michael Zhang, head of DC Product Line at Greatwall Power. “We look forward to deepening our collaboration with Navitas to unlock the application of GaN in more fields, continuously improve power supply efficiency to reduce energy consumption, and accelerate the low-carbon transformation of various industries.”
“Navitas is deeply honored to cooperate with Great Wall Power to successfully create this ultra-high-power density 2.5 kW DC-DC converter. The profound heritage and innovative strength of Great Wall Power in the power supply field have enabled our GaNFast power ICs to fully demonstrate their advantages,’ said Charles Zha, SVP and GM of Navitas Asia-Pacific. “Navitas firmly believes that continuous cooperation with Great Wall will make GaN technology shine in multiple fields such as AI data centers and telecommunications and promote the industry to develop towards a more efficient and environmentally friendly direction.”
Original – Navitas Semiconductor
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG
Nexperia Expands GaN FET Portfolio to Cover Wider Power Ranges in Low- and High-Voltage Applications
2 Min ReadNexperia announced the addition of 12 new devices to its continuously expanding e-mode GaN FET portfolio. This latest release is intended to address the growing demand for higher efficiency and more compact systems. The new low and high-voltage e-mode GaN FETs address multiple markets including consumer, industrial, server/computing and telecommunications, with a particular focus on supporting high-voltage, low to mid-power and low-voltage, low to high-power use cases.
Since introducing e-mode GaN FETs in 2023, Nexperia remains the only supplier in the industry to offer both cascode or d-mode and e-mode devices, providing designers with convenience when faced with variable challenges during the design process.
The latest additions to Nexperia’s e-mode GaN FET portfolio include new low voltage 40 V bi-directional devices (RDSon<12 mΩ) to support overvoltage protection (OVP), load switching, and low-voltage applications including battery management systems (BMS) in mobile devices, and laptop computers.
Also featuring in this release are 100 V and 150 V devices (RDSon<7 mΩ) suitable for synchronous rectification (SR) power supplies in consumer devices, DC-DC converters in datacomms and telecoms equipment, photovoltaic micro-inverters, Class-D audio amplifiers and motor control systems in e-bikes, forklifts and light electric vehicles (LEVs). The new higher voltage range features 700 V devices (RDSon>140 mΩ) to support LED drivers and power factor correction (PFC) applications, and 650 V devices (RDSon>350 mΩ) suitable for use in AC/DC converters.
The superior switching performance of Nexperia’s e-mode GaN FET technology is due to their exceptionally low QG and QOSS values. These new devices offer industry-leading figures of merit (FOM), making them a top choice for high-efficiency power solutions.
Original – Nexperia
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG2 Min Read
Efficient Power Conversion introduced the EPC2367, a next-generation 100 V eGaN® FET that delivers superior performance, higher efficiency, and lower system costs for power conversion applications.
Designed for 48 V intermediate voltage bus architectures, the EPC2367 significantly advances the performance of power systems by reducing power loss, increasing efficiency, and enabling more compact and cost-effective designs. This new device sets a benchmark in performance compared to both previous-generation GaN and traditional silicon MOSFET solutions.
Key Advantages of the EPC2367
- Ultra-Low On-Resistance (RDS(on)): 1.2 mΩ, a ~ 30% improvement over previous generation best-in-class devices
- Smaller Footprint: 3.3 mm × 3.3 mm QFN package, reducing PCB space and enhancing thermal performance
- Best-in-Class Switching Figures of Merit (FoM): EPC2367 outperforms competitors in hard and soft-switching applications, delivering superior efficiency and lower power losses
- Enhanced Thermal Performance: Operates cooler under load, improving system reliability and enabling higher power densities
- Outstanding Temperature Cycling Reliability: 4× the thermal cycling capability compared to previous GaN generations, ensuring robust long-term operation
Superior In-Circuit Performance
The EPC2367 has been rigorously tested in hard and soft-switching applications. Performance results demonstrate higher efficiency across the full power range, with significant power loss reductions. In a 1 MHz, 1.25 kW system, EPC2367 reduces power losses while achieving 1.25× the output power compared to previous GaN and Si MOSFET alternatives.
The EPC2367 advances GaN technology with ultra-low on-resistance and superior thermal cycling, enabling engineers to boost efficiency and power density in AI servers, robotics, and automotive systems,
said Alex Lidow, EPC CEO and co-founder.The EPC90164 development board is a half bridge featuring the EPC2367 GaN FET. It is designed for 80 V maximum operating voltage and 35 A maximum output current. The purpose of this board is to simplify the evaluation process of power systems designers to speed their product’s time to market. This 2” x 2” (50.8 mm x 50.8 mm) board is designed for optimal switching performance and contains all critical components for easy evaluation.
Original – Efficient Power Conversion