-
LATEST NEWS / PRODUCT & TECHNOLOGY3 Min Read
Toshiba Electronic Devices & Storage Corporation has launched a gate driver photocoupler, “TLP5814H,” with an output of +6.8A/-4.8A, in a small size SO8L package, that incorporates an active Miller clamp function for driving silicon carbide (SiC) MOSFETs.
In circuits such as inverters, where MOSFETs or IGBTs are used in series, gate voltage can be generated by a Miller current when the lower arm is turned off, causing malfunctions such as short circuits in the upper and lower arms. A commonly used protection function to prevent this is the application of a negative voltage to the gate when it is turned off.
For some SiC MOSFETs, which commonly feature higher voltage, lower on-resistance and faster switching characteristics than silicon (Si) MOSFETs, sufficient negative voltage cannot be applied between the gate and source. In this case, an active Miller clamp circuit can be used to flow the Miller current from the gate to ground, preventing the short circuiting without the need to apply the negative voltage. However, there are cost-cutting designs that reduce the negative voltage applied to the gate when the IGBTs are turned off, and in these cases, gate drivers with a built-in active Miller clamp are an option for consideration.
The new product has a built-in active Miller clamp circuit, so there is no need for an additional power supply for negative voltage and external active Miller clamp circuits. This provides a safety function for the system and also promotes system miniaturization by reducing the number of external circuits. The active Miller clamp circuit has a channel resistance of 0.69Ω (typ.) and a peak clamp sinking current rating of 6.8A, making it suitable as a gate driver for SiC MOSFETs, which are highly sensitive to changes in gate voltage.
TLP5814H has an operating temperature rating of -40 to 125°C, achieved by enhancing the optical output of the infrared emitting diode on the input side and optimizing the design of the photo detector devices (photodiode arrays) to improve optical coupling efficiency.
This makes it suitable for industrial equipment that require strict thermal management, such as photovoltaic (PV) inverters and uninterruptible power supplies (UPSs). Its propagation delay time and propagation delay skew are also specified in the operating temperature rating range. Its package, a small size SO8L, 5.85×10×2.1mm (typ.), helps improve the flexibility of parts layout on a system board. In addition, it features a minimum creepage distance of 8.0mm, allowing it to be used for applications requiring high insulation performance.
Toshiba will continue to develop photocoupler products that contribute to enhancing the safety function of industrial equipment.
Original – Toshiba
-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si2 Min Read
Toshiba Electronics Europe GmbH has launched an N-channel power MOSFET to address the growing market demand for improved efficiency in power supply circuits. The new TK024N60Z1 uses the proven DTMOSVI 600V series process with a super junction structure to achieve low on-resistance and reduced conduction losses. Applications include servers in data centres, switched-mode power supplies for industrial equipment, and power conditioners for photovoltaic generators.
The TK024N60Z1 has a drain-source on-resistance RDS(ON) of 0.024Ω (max), which is the lowest in the DTMOSVI 600V series. It also improves power supply efficiency, which reduces heat generation. Combined with the TO-247 package, which delivers high heat dissipation, the TK024N60Z1 offers good heat management characteristics.
Like other MOSFETS in the DTMOSVI 600V series, the TK024N60Z1 benefits from an optimised gate design and process. This reduces the value of drain-source on-resistance per unit area by approximately 13%. More importantly, drain-source on-resistance × gate-drain charge is reduced by approximately 52% compared to Toshiba’s conventional generation DTMOSIV-H series products with the same drain-source voltage rating. This means the DTMOSVI series, including the TK024N60Z1, offers a better trade-off between conduction loss and switching loss, which helps improve the efficiency of switched-mode power supplies.
To further improve power supply efficiency, Toshiba offers tools that support circuit design for switched-mode power supplies. These include the G0 SPICE model, which quickly verifies circuit function, and the highly accurate G2 SPICE models that reproduce transient characteristics.
The TK024N60Z1 N-channel power MOSFET exemplifies Toshiba’s commitment to continue expanding the DTMOSVI series and support energy conservation by reducing power loss in switched-mode power supplies.
Original – Toshiba
-
In its FY2024 third-quarter consolidated business results, Toshiba Corporation reported a significant turnaround, achieving an operating income of ¥114.3 billion, the highest for the first three quarters since FY2018, when the memory business was excluded from its portfolio. This marks a substantial improvement from the previous year, driven by increased net sales and effective management reforms.
Financial Performance Overview
For the first nine months of FY2024, Toshiba’s net sales experienced a year-over-year (YoY) increase. Despite a sluggish recovery in the semiconductor market leading to decreased sales in that segment, other areas such as Hard Disk Drives (HDDs) and Power Generation Systems performed well. The Building Solutions segment also saw improved operating income due to profitability-focused reforms. These positive outcomes contributed to the overall increase in operating income across all segments.
A notable factor in this financial upturn was the reduction in provisions by ¥50.9 billion YoY, achieved through enhanced risk analysis and management efforts. Net income reached ¥184.8 billion, a significant rise of ¥291.8 billion YoY, bolstered by increased equity earnings from affiliates, particularly due to Kioxia Holdings Corporation’s improved performance.
Segment-Specific Insights
- Semiconductors and Storage: The semiconductor segment faced challenges with decreased sales attributed to a slow market recovery. However, the HDD sector experienced higher sales, contributing positively to the company’s operating income.
- Energy Systems & Solutions: This segment saw an increase in orders, particularly for large-scale projects, leading to a higher order backlog. The positive trend indicates robust demand and a strong market position in energy solutions.
- Infrastructure Systems & Solutions: The segment reported increased orders and a growing order backlog, reflecting successful acquisition of large-scale projects and a solid market presence.
- Building Solutions: Focused reforms aimed at enhancing profitability led to improved operating income in this segment, particularly in the elevator business in Japan.
Strategic Initiatives and Management Reforms
Toshiba’s financial resurgence can be attributed to several strategic initiatives and management reforms:
- Enhanced Risk Management: The company implemented a comprehensive risk analysis framework, resulting in a significant reduction in provisions and contributing to improved financial stability.
- Cost Optimization: Efforts to reduce fixed costs and conduct regular sales price reviews have been instrumental in enhancing profitability across various business segments.
- Focus on Core Competencies: By concentrating resources on high-performing sectors such as energy systems and infrastructure solutions, Toshiba has strengthened its market position and financial performance.
Looking ahead, Toshiba aims to build on its current momentum by continuing to implement management reforms and strategic initiatives. The company is poised to capitalize on growth opportunities in its core business areas while maintaining a strong focus on risk management and operational efficiency.
Toshiba Corporation’s third-quarter results for FY2024 reflect a robust financial recovery, driven by strategic reforms, effective risk management, and a focus on core business strengths. The company’s proactive approach positions it well for sustained growth and profitability in the coming years.
Original – Toshiba
-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si2 Min Read
Toshiba Electronic Devices & Storage Corporation has expanded the lineup of 150V N-channel power MOSFETs with new six products that use the new generation process “U-MOSⅩ-H series.” Products in this series are suitable for the switching power supplies of industrial equipment such as data centers and communication base. The package of new products is a three-pin through hole type: TO-220 for “TK4R9E15Q5, TK7R2E15Q5 and TK9R6E15Q5” and TO-220SIS for “TK5R0A15Q5, TK7R4A15Q5 and TK9R7A15Q5.”
The new products use the U-MOSⅩ-H process to achieve low drain-source On-resistance. In particular, TK4R9E15Q5 features the excellent low drain-source On-resistance of 4.9mΩ (max). In addition, the new products uses high-speed diode (HSD) to improve reverse recovery characteristics, which are important for synchronous rectification applications, by reducing reverse recovery charge and faster reverse recovery time. Used in synchronous rectification applications, the new products reduce the power loss of switching power supplies and help improve efficiency.
The first product TPH9R00CQ5 which uses HSD, has approximately 74% less reverse recovery charge and approximately 44% faster reverse recovery time than Toshiba‘s existing product TPH9R00CQH, which does not use HSD. The U-MOSⅩ-H process using this HSD has applied to through hole type packages in addition to surface mount type packages.
The new products have reduced the drain source spike voltage generated between the drain and source when MOSFET is switching, helping to lower EMI in switching power supplies.
Toshiba will continue to promote the expansion of its power MOSFET lineup, which helps improve the efficiency of power supplies, thereby contributing to reducing the power consumption of equipment.
Applications
- Switching power supplies for communication equipment, etc. (high efficiency AC-DC converters, high efficiency DC-DC converters, etc.)
- Motor control equipment (motor drives, etc.)
Features
- Excellent low On-resistance:
TK4R9E15Q5 RDS(ON)=4.9mΩ (max) (VGS=10V) - Low reverse recovery charge:
TK9R6E15Q5 Qrr=32nC (typ.) (-dIDR/dt=100A/μs) - Fast reverse recovery time:
TK9R6E15Q5 trr=40ns (typ.) (-dIDR/dt=100A/μs)
Original – Toshiba
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG1 Min Read
Toshiba Electronics Europe GmbH enhances its silicon carbide (SiC) diode portfolio with ten new 1200V Schottky barrier diodes (SBDs). The TRSxxx120Hx series, comprising five products housed in TO-247-2L packages and five in TO-247 packages, helps designers improve the efficiency of industrial equipment, including photovoltaic (PV) inverters, electric vehicle (EV) charging stations, and switching power supplies.
By implementing an enhanced junction barrier Schottky (JBS) structure, the TRSxxx120Hx series allows a very low forward voltage (VF) of just 1.27V (typ.). The merged PiN-Schottky incorporated into a JBS structure reduces diode losses under high current conditions. The TRS40N120H of the new series accepts a forward DC current (IF(DC)) of 40A (max) and a non-repetitive peak forward surge current (IFSM) of 270A (max), with the maximum case temperature (TC) of all devices being +175°C.
Combined with the lower capacitive charge and leakage current, the products help improve system efficiency and simplify thermal design. For instance, at a reverse voltage (VR) of 1200V, the TRS20H120H diode housed in the TO-247-2L package provides a total capacitive charge (QC) of 109nC and reverse current (IR) of 2µA.
Original – Toshiba
-
Toshiba Electronics Europe GmbH has launched a small new intelligent power device (IPD) for space-constrained brushless DC (BLDC) motor drive applications such as air conditioners, air purifiers, and pumps.
The new IPD (TPD4165K) has an increased maximum output current of 3A, compared to the 2A rating of Toshiba’s existing products like TPD4163K, or TPD4164K. This extends the range of supported equipment and allows use in higher power applications. The device is suitable for sine-wave drive.
As power supply voltage may fluctuate significantly in some regions where the IP could be used, the absolute maximum voltage rating (VBB) has been increased to 600V to enhance long-term reliability. This represents a 20% increase over Toshiba’s previous products (TPD4123K, TPD4123AK, TPD4144K, TPD4144AK, TPD4135K, TPD4135AK).
The new TPD4165K is housed in a through-hole HDIP30 package. This has a 21% smaller footprint than the DIP26 package used for many of Toshiba’s previous products, simplifying the design process for challenging space-constrained applications. The new device measures just 32.8mm x 13.5mm x 3.525mm. It supports either three-shunt or single-shunt resistor circuit for current sensing.
Built into the new IPD is a range of safety features including over-current, under-voltage and thermal shutdown. Additionally, an external signal can be applied to the SD pin to control the behaviour of the output stage. The DIAG output pin provides the status of the safety conditions.
Designers can freely access a reference design for a sensorless BLDC motor drive circuit based upon the new TPD4165K and Toshiba’s TMPM374FWUG microcontroller with vector control engine capability. The reference design data can be downloaded from Toshiba’s website.
Toshiba will continue to expand its product range by adding devices with improved characteristics. This will assist designers by improving design flexibility as well as contributing to carbon neutrality through energy-saving motor control.
Original – Toshiba
-
LATEST NEWS / PRODUCT & TECHNOLOGY / Si2 Min Read
Toshiba Electronic Devices & Storage Corporation has expanded its lineup of 600V N-channel power MOSFETs “DTMOSVI series” fabricated with Toshiba’s latest-generation process, with a super junction structure. These new products are suitable for high efficiency switching power supplies used for data centers and power conditioners of photovoltaic generators. Nine products of “TK40N60Z1, TK080N60Z1, TK080A60Z1, TK085V60Z1, TK125N60Z1, TK125A60Z1, TK130V60Z1, TK155A60Z1 and TK165V60Z1” have been added to the lineup in terms of packages and drain-source On-resistance.
By optimizing the gate design and process, 600V DTMOSVI series products have reduced the value of drain-source On-resistance per unit area by approximately 13%, and drain-source On-resistance × gate-drain charge ―the figure of merit for MOSFET performance― by approximately 52% compared to Toshiba’s current generation DTMOSIV-H series products with the same drain-source voltage rating. This means new products have a better trade-off between conduction loss and switching loss than current products. New products of DTMOSVI series will contribute improving efficiency of power supplies.
Toshiba offers tools that support circuit design for switching power supplies. Alongside the G0 SPICE model, which verifies circuit function in a short time, highly accurate G2 SPICE models that accurately reproduce transient characteristics are now available.
Toshiba will continue to expand its DTMOSVI series lineup, and support energy conservation by reducing power loss in switching power supplies.
Original – Toshiba