Si Tag Archive

  • ROHM and Toshiba to Collaborate in Manufacturing Si and SiC Power Devices

    ROHM and Toshiba to Collaborate in Manufacturing Si and SiC Power Devices

    3 Min Read

    A plan by ROHM Co., Ltd. and Toshiba Electronic Devices & Storage Corporation to collaborate in the manufacture and increased volume production of power devices has been recognized and will be supported by the Ministry of Economy, Trade and Industry as a measure supporting the Japanese Government’s target of secure and stable semiconductor supply.

    ROHM and Toshiba Electronic Devices & Storage will respectively make intensive investments in silicon carbide (SiC) and silicon (Si) power devices, effectively enhance their supply capabilities, and complementally utilize other party’s production capacity.

    Power devices are essential components for supplying and managing power supply in all kinds of electronic equipment, and for achieving a carbon-free, carbon-neutral society. Current demand is expected to see continued growth.

    In automotive applications, development of more efficient, smaller and lighter electric powertrains has advanced alongside the rapid expansion in vehicle electrification. In industrial applications, stable supply of power devices and improved characteristics are widely required to support increasing automation and higher efficiency requirements.

    Against this backdrop, ROHM has formulated a management vision, “We focus on power and analog solutions and solve social problems by contributing to our customers’ needs for energy savings and miniaturization of their products.,” and accelerates its efforts for a carbon-free. SiC power devices are the keys to energy savings.

    Since the world’s first mass production of SiC MOSFETs, ROHM has been constantly developing industry-leading technologies. Among these are ROHM’s latest 4th Generation SiC MOSFETs that will be adopted for numerous electric vehicles and industrial equipment. As one of its priority projects, ROHM is working on SiC business, which contains aggressive and continuous investment to increase the production capacity of SiC and meet strong demand growth.

    Toshiba Group, with its long-standing Basic Commitment, “Committed to People, Committed to the Future.,” aims to advance the achievement of carbon neutrality and a circular economy. Toshiba Electronic Devices & Storage has for decades supplied Si power devices, mainly for automotive and industrial markets, that have helped to secure energy saving solutions and equipment miniaturization.

    The company started production on a 300mm wafer line last year, and is accelerating investment to enhance production capacity and meet strong demand growth. It is also advancing development of a wider lineup of SiC power devices, especially for automotive and power transmission and distribution applications, taking full advantage of the expertise it has cultivated in railway vehicle applications.

    ROHM has already announced its participation in the privatization of Toshiba, but this investment did not serve as the starting point for manufacturing collaboration between the two companies. Under intensifying international competition in the semiconductor industry, ROHM and Toshiba Electronic Devices & Storage have been considering collaboration in the power device business for some time, and that resulted in the joint application.

    ROHM and Toshiba Electronic Devices & Storage will collaborate in manufacturing power devices, through intensive investments in SiC and Si power devices, respectively, toward enhancing both companies’ international competitiveness. The companies will also seek to contribute to strengthening the resilience of semiconductor supply chains in Japan.

    Original – Toshiba

    Comments Off on ROHM and Toshiba to Collaborate in Manufacturing Si and SiC Power Devices
  • ROHM Expanded the Library of SPICE Model Lineup 

    ROHM Expanded the Library of SPICE Model Lineup 

    2 Min Read

    ROHM has expanded the library of SPICE model lineup for LTspice® of its circuit simulator. LTspice® is also equipped with circuit diagram capture and waveform viewer functions that make it possible for designers to check and verify in advance whether the circuit operation has been achieved as designed.

    In addition to the existing lineup of bipolar transistors, diodes, and MOSFETs, ROHM has added SiC power devices and IGBTs that increases its number of LTspice® models to more than 3,500 for discretes (which can be downloaded from product pages). This brings the amount of coverage of LTspice® models on ROHM’s website to over 80% of all products – providing greater convenience to designers when using circuit simulators that incorporate discrete products, now including power devices.

    In recent years, the increasing use of circuit simulation for circuit design has expanded the number of tools being utilized. Among these, LTspice® is an attractive option for a range of users, from students to even seasoned engineers at well-known companies. To support these and other users, ROHM has expanded its library of LTspice® models for discrete products.

    Besides product pages, ROHM has added a Design Models page in October that allows simulation models to be downloaded directly. Documentation on how to add libraries and create symbols (schematic symbols) is also available to facilitate circuit design and simulation execution.

    Going forward, ROHM will continue to contribute to solving circuit design issues by expanding the number of models compatible with various simulators while providing web tools such as ROHM Solution Simulator to meet growing customer needs.

    Original – ROHM

    Comments Off on ROHM Expanded the Library of SPICE Model Lineup 
  • Infineon Adds a QDPAK Package to Its 650 V CoolMOS CFD7A Family

    Infineon Adds a QDPAK Package to Its 650 V CoolMOS CFD7A Family

    3 Min Read

    The accelerated transition to electric vehicles has led to significant innovations in charging systems that demand more cost-efficient and high performing power electronics. Addressing this, Infineon Technologies AG expands its 650 V CoolMOS™ CFD7A portfolio by introducing the QDPAK package.

    This package family is designed to provide equivalent thermal capabilities with improved electrical performance over the well-known TO247 THD devices, thus enabling efficient energy utilization in onboard chargers and DC-DC converters.

    Efficient and powerful electric vehicle charging systems help reduce charging times and vehicle weight, increasing design flexibility and reduce the total cost of ownership of the vehicle. This new addition complements the existing CoolMOS CFD7A series, offering versatility with top-side and bottom-side cooled packages. The QDPAK TSC (top side cooled), enables designers to achieve higher power densities and optimal PCB space utilization.

    The 650 V CoolMOS CFD7A offers several important features for reliable operation in high-voltage applications. Thanks to its reduced parasitic source inductance, the device can minimize electromagnetic interference (EMI), ensuring clear signals and consistent performance.

    The Kelvin source pin also provides improved precision for current sensing, ensuring accurate measurements even in challenging conditions. With a creepage distance suitable for high voltage applications, as well as high current capability and high power dissipation (P tot) of up to 694 W at 25°C, it is a versatile and powerful device for a wide range of high-voltage applications.

    New system designs using 650 V CoolMOS CFD7A in QDPAK TSC will maximize PCB space use, doubling power density and enhancing thermal management via substrate thermal decoupling. This approach simplifies assembly, eliminates board stacking and reduces the need for connectors, thereby lowering system costs. The power switch reduces thermal resistance by up to 35 percent, providing high power dissipation that outperforms standard cooling solutions.

    This feature overcomes the thermal limitations of bottom side cooled SMD designs using FR4 PCBs, resulting in a significant boost in system performance. The optimized power loop design locates drivers near the power switch, improving reliability by reducing stray inductance and chip temperatures. Overall, these features contribute to a cost-effective, robust, and efficient system ideal for modern power needs.

    As announced in February 2023, the QDPAK TSC package has been registered as a JEDEC standard for high-power applications, helping to establish a broad adoption of TSC in new designs with one standard package design and footprint. To further to accelerate this transition, Infineon will also release additional Automotive Qualified devices in QDPAK TSC for onboard chargers and DC-DC converters in 2024, such as 750 V and 1200 V CoolSiC™ devices.

    Original – Infineon Technologies

    Comments Off on Infineon Adds a QDPAK Package to Its 650 V CoolMOS CFD7A Family
  • onsemi Opened a Test Lab in Slovakia to Advance System Solutions for xEVs and EI

    onsemi Opened a Test Lab in Slovakia to Advance System Solutions for xEVs and EI

    2 Min Read

    onsemi opened an application test lab in Piestany, Slovakia, focused on the advancement of system solutions for battery/plug-in hybrid/electric vehicles (xEVs) and energy infrastructure (EI) power conversion systems. The state-of-the-art systems applications lab provides specialized equipment to develop and test next-generation silicon (Si) and silicon carbide (SiC) semiconductor solutions in collaboration with automotive OEMs, Tier 1s and EI providers.

    Modern semiconductor devices are essential for highly efficient power conversion in xEV powertrains and charging, as well as applications in renewable energy. The new lab will play a central role in ensuring that the development of future power products results in highly differentiated, value-add solutions tailored to customers’ specific requirements.

    The new facility consists of two high-voltage power labs that focus on systems and device level development as well as evaluation of SiC/Si traction inverters and ACDC/DCDC power converters. Laser welding facilities, mechanical clean rooms and workshops further enable fast prototyping and testing of next-generation system solutions.

    Evaluation capabilities for the next-generation system solutions include:

    • Continuous 24/7 testing
    • Internally developed and patented software and hardware solutions to support high-voltage power cycling via space vector modulation (SVM) and sinusoidal pulse width modulation (SPWM)
    • High-accuracy logging devices for assessing SiC and Si health and reliability
    • Simulation of the harsh conditions faced by inverters during operation, testing liquid-cooled devices at temperatures as low as minus 50 degrees C and up to 220 degrees C
    • Wider range of industry-recognized software allows for the programing of FPGAs and ARM microcontrollers on site, as well as qualification testing, data analysis and 3D modeling

    Original – onsemi

    Comments Off on onsemi Opened a Test Lab in Slovakia to Advance System Solutions for xEVs and EI
  • MCC Adds New 60V N-Channel Power MOSFETs to its Robust Auto Portfolio

    MCC Adds New 60V N-Channel Power MOSFETs to its Robust Auto Portfolio

    1 Min Read

    MCC Semi expanded its growing auto-grade portfolio with three new 60V N-channel MOSFETs: MCU75N06YHE3-TP, MCG60N06YHE3-TP, and MCAC65N06YHE3-TP.

    Leveraging split-gate trench (SGT) MOSFET technology, MCC’s new products deliver optimal performance, efficiency, and thermal management, making them the intelligent choice for a range of demanding auto applications.

    With on-resistance as low as 4.8mΩ, these AEC-Q101 qualified MOSFETs guarantee optimal power flow while significantly reducing power losses.

    DFN333, DFN5060, and DPAK package options enable design flexibility and compatibility with various automotive systems.

    Original – Micro Commercial Components

    Comments Off on MCC Adds New 60V N-Channel Power MOSFETs to its Robust Auto Portfolio
  • Toshiba Launched New Automotive Grade 40V N-channel Power MOSFETs

    Toshiba Launched New Automotive Grade 40V N-channel Power MOSFETs

    2 Min Read

    Toshiba Electronics Europe GmbH has launched a pair of automotive grade 40V N-channel power MOSFETs based upon their latest U-MOS IX-H process. The new devices use a new S-TOGLTM (Small Transistor Outline Gull-wing Leads) package that offers a number of advantages in automotive applications.

    Automotive safety-critical applications such as steering, braking and autonomous driving systems generally require more devices than other systems to meet redundancy requirements. Here, a power MOSFET with high current density is required due to the size constraints within automotive equipment.

    The new XPJR6604PB and XPJ1R004PB have a VDSS rating of 40V and the XPJR6604PB is rated for a continuous drain current (ID) of 200A (XPJ1R004PB = 160A). Both devices are rated for pulsed current (IDP) at 3x this value, 600A and 480A respectively. The 200A rating is higher than that achieved by Toshiba’s 6.5mm × 9.5mm DPAK+ package.

    The new XPJR6604PB and XPJ1R004PB automotive MOSFETs use Toshiba’s innovative new S-TOGLTM package that measures just 7.0mm × 8.44mm × 2.3mm. The products are post-less and feature a multi-pin structure for the source leads that significantly decreases package resistance.

    Combining the S-TOGLTM package with Toshiba’s U-MOS IX-H process gives the XPJR6604PB an on-resistance (RDS(ON) Compared to this device, the mounting area has reduced by around 55% compared while retaining the channel-to-case thermal resistance characteristics (Zth(ch-c)) – XPJR6604PB = 0.4ºC/W and XPJ1R004PB = 0.67ºC/W.

    Many automotive applications are based in severely harsh environments, so the reliability of surface mount solder joints is a critical consideration. Toshiba’s S-TOGLTM package uses gull-wing leads that reduce mounting stress, improving the reliability of the solder joint.

    Suited to harsh temperature environments, the MOSFETs are AEC-Q101 qualified and capable of operating at channel temperatures (Tch) as high as 175ºC.

    Toshiba offers matched shipments for the devices, in which the gate threshold voltage range does not exceed 0.4V for each reel. This facilitates designs with small characteristic variations for applications requiring parallel connectivity for high-current operation.

    Original – Toshiba

    Comments Off on Toshiba Launched New Automotive Grade 40V N-channel Power MOSFETs
  • Vincotech Introduced New 1200 V flowPIM 1

    Vincotech Introduced New 1200 V flowPIM 1

    1 Min Read

    Designing state-of-the-art heat pumps and HVAC systems is not easy. Finding a way to overcome demands, such as giving more power in a smaller footprint requires a lot from a power module.

    Vincotech’s new 1200 V PIM+PFC is the answer. Its integrated three-phase ANPFC and inverter stage resolve contradiction to boost efficiency and cut systems costs. More compact designs at higher power ranges is not a problem any more.

    Samples are available through our usual channels.

    Main benefits

    • All-in-one solution: 3-phase PFC with inverter stage in a compact flow1 housing allows for more compact designs and higher power density
    • High efficient AN-PFC topology with SiC diodes for switching frequencies up to 150 kHz reduces systems costs
    • High speed IGBT’s in the inverter stage for high switching frequency operation
    • Thin Al2Osubstrate eases the system’s thermal design
    • Integrated thermal sensor simplifies temperature measurement


    • Embedded drives
    • Industrial drives

    Original – Vincotech

    Comments Off on Vincotech Introduced New 1200 V flowPIM 1
  • ROHM Delivers New 5-Model Lineup of 100V Dual MOSFETs

    ROHM Delivers New 5-Model Lineup of 100V Dual MOSFETs

    2 Min Read

    ROHM has developed dual MOSFETs that integrate two 100V chips in a single package – ideal for fan motor drive applied in communication base stations and industrial equipment. New five-models have been added as part of the HP8KEx/HT8KEx (Nch+Nch) and HP8MEx (Nch+Pch) series.

    Recent years have seen a transition to higher voltages from conventional 12V/24V to 48V systems in communication base stations and industrial equipment, – intending to achieve higher efficiency by reducing current values. In these situations, switching MOSFETs are required a withstand voltage of 100V to account for voltage fluctuations, as 48V power supplies are also used in the fan motors for cooling these applications.

    However, increasing the breakdown voltage raises ON resistance (RDS(on)) (which is in a trade-off relationship), leading to decreased efficiency, making it difficult to achieve both lower RDS(on) and higher breakdown voltage. Moreover, unlike multiple individual drive MOSFETs normally applied in fan motors - dual MOSFETs that integrate two chips in one package are increasingly being adopted to save space.

    In response, ROHM developed two new series – the HP8KEx/HT8KEx (Nch+Nch) and the HP8MEx (Nch+Pch) – that combine Nch and Pch MOSFET chips using the latest processes. Both series achieve the industry’s lowest RDS(on) by adopting new backside heat dissipation packages with excellent heat dissipation characteristics. As a result, RDS(on) is reduced by up to 56% compared with standard dual MOSFETs (19.6mΩ for the HSOP8 and 57.0mΩ for the HSMT8 Nch+Nch), contributing to significantly lower set power consumption.

    At the same time, combining two chips in a single package provides greater space savings by reducing area considerably. For example, replacing two single-chip TO-252 MOSFETs with one HSOP8 decreases footprint by 77%.

    Next, ROHM will continue to expand its dual MOSFET lineup to withstand voltages ideal for industrial equipment while also developing low-noise variants. This is expected to contribute to solving social issues such as environmental protection by saving space and reducing power consumption in various applications.

    Application Examples

    – Fan motors for communication base stations
    – Fan motors for factory automation, and other industrial equipment
    – Fan motors for data center servers, etc.

    Original – ROHM

    Comments Off on ROHM Delivers New 5-Model Lineup of 100V Dual MOSFETs
  • Micro Commercial Components Presents AEC-Q101 100V MOSFET for Enhanced Auto Performance

    Micro Commercial Components Launched AEC-Q101 100V MOSFET for Enhanced Auto Performance

    1 Min Read

    Micro Commercial Components introduced the latest auto-grade MOSFET in the TOLL package for today’s demanding e-mobility applications. AEC-Q101 qualified and ready to empower auto designs, MCC’s100V MCTL300N10YHE3 MOSFET delivers exceptional performance and unmatched reliability for a range of systems, including battery management systems, motor drives, and interior or exterior LED lighting. 

    Designed with split-gate trench (SGT) technology, this component features low on-resistance and high current density to maximize efficiency while handling power loads. It’s also a great replacement for traditional MOSFETs due to its enhanced performance.  The innovative TOLL-8 package provides design flexibility due to its compact footprint and optimal heat dissipation to ensure safe operation in high-temperature environments. 

    Fully RoHS compliant, MCTL300N10YHE3 is the ideal solution for automotive applications.

    Features & Benefits:

    • Exceptional performance and reliability
    • AEC-Q101 qualified
    • SGT technology for improved performance
    • Low on-resistance for enhanced efficiency
    • High current density capabilities
    • Low-profile TOLL package saves design space
    • Excellent heat dissipation for reliable operation in high temperatures
    • Halogen-free and lead-free finish for environmental friendliness and compliance with RoHS regulations

    Original – Micro Commercial Components

    Comments Off on Micro Commercial Components Launched AEC-Q101 100V MOSFET for Enhanced Auto Performance
  • Infineon Seals Multi-year Supply Agreement for SiC and Si Power Semiconductors with Hyundai and Kia

    Infineon Seals Multi-Year Supply Agreement for Si and SiC Power Semiconductors with Hyundai and Kia

    2 Min Read

    Infineon Technologies AG and Hyundai Motor Company and Kia Corporation have signed a multi-year supply agreement for silicon carbide (SiC) and silicon (Si) power semiconductors. Infineon will build and reserve manufacturing capacity to supply SiC as well as Si power modules and chips to Hyundai/Kia until 2030. Hyundai/Kia will support the capacity build-up and capacity reservation with financial contributions.

    “Infineon stands as a valued strategic partner, boasting steadfast production capabilities and distinct technological prowess within the power semiconductor market,” said Heung Soo Kim, Executive Vice President and Head of Global Strategy Office (GSO) at Hyundai Motor Group. “This partnership not only empowers Hyundai Motor and Kia to stabilize its semiconductor supply but also positions us to solidify our leadership in the global EV market, underpinned by our competitive product lineups.”

    “The future car will be clean, safe and smart and semiconductors are at the heart of this transformation. As a trusted partner, we are proud to advance our long-term partnership with Hyundai/Kia,” said Peter Schiefer, President of Infineon’s Automotive Division. “We contribute premium products of high quality, our system knowledge and application understanding combined with continued investments in manufacturing capacity to address the increasing demand for automotive power electronics.”

    Infineon’s power semiconductors are key enablers for the transition to electromobility. This transition will lead to strong market growth for power semiconductors, especially those based on wide bandgap materials like SiC.

    With the significant expansion of its Kulim fab, Infineon will build the world’s largest 200-millimeter SiC power fab and further strengthen its market-leading role as a high-quality, high-volume supplier to the automotive industry. In line with Infineon’s multi-site strategy, the Kulim facility will complement Infineon’s current manufacturing capacity in Villach, Austria, and further capacity expansions in Dresden, Germany.

    Original – Infineon Technologies

    Comments Off on Infineon Seals Multi-Year Supply Agreement for Si and SiC Power Semiconductors with Hyundai and Kia