WBG Tag Archive

  • Taiwan Semiconductor Announced a Family of 650V SiC SBDs

    Taiwan Semiconductor Announced a Family of 650V SiC SBDs

    1 Min Read

    Taiwan Semiconductor – a global supplier of discrete power electronics devices, LED drivers, analog ICs and ESD protection devices – announced a family of 650V silicon carbide Schottky barrier diodes which are suitable for high-efficiency AC-DC, DC-DC and DC-AC conversion applications.

    Unlike silicon-based fast-recovery rectifiers, these SiC devices have negligible switching losses due to low capacitive charge (QC). This makes them suitable for high-speed switching applications, benefitting circuit designs with increased power density and can reduce overall solution size.

    Key Features

    • Max. junction temperature 175°C
    • High-speed switching
    • High frequency operation
    • Positive temperature coefficient on VF
    • SPICE Models available
    • Thermal Models available


    • AD-DC conversion – PFC Boost
    • DC-DC, Solar inverters
    • Data center and server power
    • Telecom – Datacom power
    • UPS systems

    Circuit Functions

    • PFC boost diode
    • Free-wheeling diode
    • Full wave bridge
    • Vienna bridgeless circuit

    Original – Taiwan Semiconductor

    Comments Off on Taiwan Semiconductor Announced a Family of 650V SiC SBDs
  • Littelfuse Introduced a New Low-side SiC MOSFET and IGBT Gate Driver

    Littelfuse Introduced a New Low-side SiC MOSFET and IGBT Gate Driver

    3 Min Read

    Littelfuse, Inc. announced the launch of the IX4352NE Low-side SiC MOSFET and IGBT Gate Driver. This innovative driver is specifically designed to drive Silicon Carbide (SiC) MOSFETs and high-power Insulated Gate Bipolar Transistors (IGBTs) in industrial applications.

    The key differentiator of the IX4352NE lies in its separate 9 A source and sink outputs, which enable tailored turn-on and turn-off timing while minimizing switching losses. An internal negative charge regulator also provides a user-selectable negative gate drive bias for improved dV/dt immunity and faster turn-off. With an operating voltage range (VDD – VSS) of up to 35 V, this driver offers exceptional flexibility and performance.

    One of the standout features of the IX4352NE is its internal negative charge pump regulator, which eliminates the need for an external auxiliary power supply or DC/DC converter. This feature is particularly valuable for turning off SiC MOSFETs, saving valuable space typically required for external logic level translator circuitry. The logic input’s compatibility with standard TTL or CMOS logic levels further enhances space-saving capabilities.

    The IX4352NE is ideally suited for driving SiC MOSFETs in various industrial applications such as:

    • on-board and off-board chargers,
    • Power Factor Correction (PFC),
    • DC/DC converters,
    • motor controllers, and
    • industrial power inverters.

    It’s superior performance makes it ideal for demanding power electronics applications in the electric vehicle, industrial, alternate energy, smart home, and building automation markets.

    With its comprehensive features, the IX4352NE simplifies circuit design and offers a higher level of integration. Built-in protection features such as desaturation detection (DESAT) with soft shutdown sink driver, Under Voltage Lockout (UVLO), and thermal shutdown (TSD) ensure the protection of the power device and the gate driver. The integrated open-drain FAULT output signals a fault condition to the microcontroller, enhancing safety and reliability. Furthermore, the IX4352NE saves valuable PCB space and increases circuit density, contributing to overall system efficiency.

    Notable improvements over the existing IX4351NE include:

    • A safe DESAT-initiated soft turn-off.
    • A thermal shutdown with high threshold accuracy.
    • The charge pump’s ability to operate during thermal shutdown.

    The new IX4352NE is pin-compatible, allowing for a seamless drop-in replacement in designs that specify the existing Littelfuse IX4351NE, which was released in 2020.

    “The IX4352NE extends our broad range of low-side gate drivers with a new 9 A sink/source driver, simplifying the gate drive circuitry needed for SiC MOSFETs,” commented June Zhang, Product Manager, Integrated Circuits Division (SBU) at Littelfuse. “Its various built-in protection features and integrated charge pump provide an adjustable negative gate drive voltage for improved dV/dt immunity and faster turn-off. As a result, it can be used to drive any SiC MOSFET or power IGBT, whether it is a Littelfuse device or any other similar component available on the market.”

    Original – Littelfuse

    Comments Off on Littelfuse Introduced a New Low-side SiC MOSFET and IGBT Gate Driver
  • Power Integrations to Acquire Assets of Odyssey Semiconductor Technologies

    Power Integrations to Acquire Assets of Odyssey Semiconductor Technologies

    2 Min Read

    Power Integrations announced an agreement to acquire the assets of Odyssey Semiconductor Technologies, a developer of vertical gallium-nitride (GaN) transistor technology. The transaction is expected to close in July 2024, after which all key Odyssey employees are expected to join Power Integrations’ technology organization.

    The acquisition supports the company’s ongoing development roadmap for its proprietary PowiGaN™ technology, which is featured in many of the company’s product families including InnoSwitch™ ICs, HiperPFS™-5 power-factor-correction ICs and the recently launched InnoMux™-2 family of single-stage, multiple-output ICs. The company introduced 900- and 1250-volt versions of PowiGaN technology and products in 2023.

    Commented Dr. Radu Barsan, Power Integrations’ vice president of technology: “Power Integrations has been at the forefront of GaN development and commercialization since we began shipping products with PowiGaN technology in 2018. We are executing on an ambitious roadmap that includes driving toward cost parity with silicon MOSFETs and expanding the voltage and power capabilities of PowiGaN.

    Our goal is to commercialize a cost-effective high-current and high-voltage GaN technology to support higher-power applications currently served by silicon carbide (SiC), at a much lower cost and higher performance enabled by the fundamental material advantages of GaN over SiC. The experience of the Odyssey team in high-current vertical GaN will augment and accelerate these efforts, and we are delighted to add them to our team.”

    Added Dr. Richard Brown, Odyssey co-founder and CEO: “The Odyssey team and I are excited to join Power Integrations in accelerating their GaN technology roadmap. As the first company to commercialize high-voltage GaN, Power Integrations continues to lead the industry in driving the technology forward in terms of cost, voltage and current, as well as the design of system-level products that take full advantage of the capabilities of GaN.”

    Original – Power Integrations

    Comments Off on Power Integrations to Acquire Assets of Odyssey Semiconductor Technologies
  • Infineon Technologies to Deliver SiC Power Solutions for Xiaomi's Recently Announced SU7 EV

    Infineon Technologies to Deliver SiC Power Solutions for Xiaomi’s Recently Announced SU7 EV

    2 Min Read

    Infineon Technologies AG will provide silicon carbide (SiC) power modules HybridPACK™ Drive G2 CoolSiC™ and bare die products to Xiaomi EV for its recently announced SU7 until 2027. Infineon’s CoolSiC-based power modules allow for higher operating temperatures, resulting in best-in-class performance, driving dynamics and lifetime.

    Traction inverters based on the technology can, for example, further increase electric vehicle range. The HybridPACK Drive is Infineon’s market-leading power module family for electric vehicles, with almost 8.5 million units sold since 2017.

    Infineon provides two HybridPACK Drive G2 CoolSiC 1200 V modules for the Xiaomi SU7 Max. In addition, Infineon supplies Xiaomi EV with a broad range of products per car, including, for example, EiceDRIVER TM gate drivers and more than ten microcontrollers in various applications. The two companies also agreed to further cooperate on SiC automotive applications to fully utilize the benefits of Infineon’s SiC portfolio.

    Zhenyu Huang, Vice President of Xiaomi EV and General Manager of the Supply Chain Department, said: “Infineon is an important partner with leading technologies and resilient manufacturing capabilities in power semiconductors as well as a highly scalable microcontroller product portfolio. The cooperation between the two companies will not only help stabilize the supply of silicon carbide for Xiaomi EV, but also help us build a high-performance, safe and reliable luxury car with leading-edge features for our customers.”

    Peter Schiefer, President of Infineon’s Automotive division, said: “We are very pleased to work with dynamic players such as Xiaomi EV and provide them with silicon carbide products designed to enhance the performance of electric cars even further. As the leading partner to the automotive industry, we are well positioned with our broad product portfolio, system understanding and multi-site manufacturing base to shape the mobility of the future.”

    This collaboration contributes to Infineon’s position as the number one partner of the global automotive industry. According to the latest data from TechInsights, Infineon is the largest semiconductor supplier to the automotive industry. In addition to its number one position in automotive power semiconductors, Infineon also took the lead in the field of automotive microcontrollers last year.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies to Deliver SiC Power Solutions for Xiaomi’s Recently Announced SU7 EV
  • University of Arkansas Tops Out Multi-User Silicon Carbide Research and Fabrication Facility

    University of Arkansas Tops Out Multi-User Silicon Carbide Research and Fabrication Facility

    2 Min Read

    The U of A celebrated a milestone with the topping-out of the Multi-User Silicon Carbide Research and Fabrication Facility.

    More than 100 students, faculty, state leaders and citizens were on hand to sign the steel topping-out beam and hear remarks from Kim Needy, dean of the College of Engineering, and Alan Mantooth, Distinguished Professor of electrical engineering. 

    The new semiconductor research and fabrication facility will produce microelectronic chips made with silicon carbide, a powerful semiconductor that outperforms basic silicon in several critical ways. The facility will enable the federal government – via national laboratories – businesses of all sizes and other universities to prototype with silicon carbide, a capability that does not presently exist elsewhere in the United States.

    Work at the research and fabrication facility will bridge the gap between traditional university research and the needs of private industry and will accelerate technological advancement by providing a single location where chips can go from developmental research to prototyping, testing and fabrication.

    The 21,760-square-foot facility, located next to the National Center for Reliable Electrical Power Transmission at the Arkansas Research and Technology Park, will address obstacles to U.S. competitiveness in the development of silicon-carbide electronics used in a wide range of electronic devices, circuits and other consumer applications. The building will feature approximately 8,000 square feet of clean rooms for fabrication and testing.

    Education and training within the facility will also accelerate workforce development, helping supply the next generation of engineers and technicians in semiconductor manufacturing.

    Original – University of Arkansas

    Comments Off on University of Arkansas Tops Out Multi-User Silicon Carbide Research and Fabrication Facility
  • SemiQ Launched a Known-Good-Die Screening Program

    SemiQ Launched a Known-Good-Die Screening Program

    2 Min Read

    SemiQ has begun a known-good-die (KGD) screening program that delivers high-quality, electrically sorted and optically inspected advanced SiC MOSFET technology ready for back-end processing and direct die attachment. 

    Known-good-die from SemiQ ensures consistent electrical parameters, enabling customers to rely on repeatable performance for high end-of-line yield when building equipment such as high-voltage supplies, traction inverters, and power conditioning systems. Uniform die parameters also simplify the connection of multiple devices in high-power modules. 

    “SiC is a powerful technology aiding the global drive for sustainability and our known-good-die SiC MOSFETs from SemiQ provide important performance advantages, such as near-constant junction capacitance, low insertion loss, and high isolation needed for high-frequency applications,” says Michael Tsang, VP, Product Engineering and Operations at SemiQ. “Thanks to this program, customers can receive quality-assured dies that will streamline and improve productivity and deliver predictable and repeatable performance in high-efficiency applications.”

    The KGD program is active now and applies to the complete portfolio of SemiQ’s QSiC™ 1200V SiC MOSFETs, ranging from 20mΩ to 80mΩ. This portfolio supports robust and efficient electrification across automotive, eMobility, renewable energy, industrial power, and other applications.

    KGD devices are supplied post-singulation on a choice of carrier media including blue tape, pre-cured UV tape, and tape and reel to ease integration with customers’ processes.  For more information, please visit SemiQ’s KGD page.

    Original – SemiQ

    Comments Off on SemiQ Launched a Known-Good-Die Screening Program
  • Transphorm and Weltrend Semiconductor Announced Availability of Two New GaN System-in-Packages

    Transphorm and Weltrend Semiconductor Announced Availability of Two New GaN System-in-Packages

    3 Min Read

    Transphorm, Inc. and the global leader in adapter USB Power Delivery (PD) Controller Integrated Circuits (IC) Weltrend Semiconductor Inc. announced availability of two new GaN System-in-Packages (SiPs). When combined with Weltrend’s flagship GaN SiP announced last year, the new devices establish the first SiP product family based on Transphorm’s SuperGaN® platform.

    The new SiPs—WT7162RHUG24B and WT7162RHUG24C—integrate Weltrend’s high frequency multi-mode (QR/Valley Switching) Flyback PWM controller with Transphorm’s 150 mΩ and 480 mΩ SuperGaN FETs respectively. Like their 240 mΩ predecessor (WT7162RHUG24A), the devices pair with USB PD or programmable power adapter controllers to provide a total adapter solution.

    Notably, they also offer several innovative features including the UHV valley tracking charge mode, adaptive OCP compensation, and adaptive green mode control among others that allow customers to design high quality power supplies faster and with fewer components using the simplest design approach.

    “When we launched our first GaN SiP last year, it was an important milestone in our company’s evolution. It demonstrated a new GTM strategy for the AC-to-DC power market,” said Wayne Lo, Vice President of Marketing, Weltrend. “Today’s news confirms we’re continuing to serve that space with a wider selection of devices designed to support a wider assortment of product power levels. A total packaged solution with Transphorm’s SuperGaN platform delivers design simplicity with unparalleled performance for devices now ranging from low 30-watt USB-C PD power adapters through to nearly 200-watt chargers, a unique Transphorm GaN capability.”

    End product manufacturers seek ways to develop new adapters with a reduced bill-of-materials (BOM) that offer versatility, fast charging, and higher power outputs. Additionally, in many cases they seek to deliver “one-size-fits-all” chargers with multiple ports and/or multiple types of connections. All of this in smaller, lighter weight form factor.

    Some key advantages of Transphorm’s normally-off d-mode SuperGaN platform include best-in-class robustness (+/- 20 V gate margin with a 4 V noise immunity) and reliability (< 0.05 FIT) with the ability to increase power density by 50% over silicon. Weltrend’s elegant SiP designs harness those advantages along with its own innovative technologies to create a near plug-and-play solution that speeds design while reducing form factor size.

    “SiPs are an important device option when considering the needs of adapter and charger manufacturers,” said Tushar Dhayagude, Vice President of Worldwide Sales and FAE, Transphorm. “These systems require effective power conversion that, while simple to use with integrated functionality, also minimize learning curves to ensure quick design in. The first device released validated the performance and versatility of a SuperGaN SiP. The new devices announced today validate both our companies’ deepening commitment to arming customers with choice.”

    Key Specifications
     WT7162RHUG24AWT7162RHUG24B (new)WT7162RHUG24C (new)
    Rds(on)240 mΩ150 mΩ480 mΩ
    Vds min650 V
    Power Efficiency> 93%
    Power Density26 w/in3
    Max Frequency180 kHz
    Wide Output
    Voltage Operation
    USB-C PD 3.0
    PPS 3.3V~21V
    Package24-pin 8×8 QFN
    Key Features
    Adjustable GaN FET gate slew rate controlBalances out efficiency and EMI compliance
    External VDD linear regulator circuit not required
    (700 V ultra HV start-up current pulled directly from AC Line voltage)
    Reduces component count
    Reduced package inductanceMaximizes chip performance
    Fits in a standard 8×8 QFN FFAllows for low profile/small system footprint

    Original – Transphorm

    Comments Off on Transphorm and Weltrend Semiconductor Announced Availability of Two New GaN System-in-Packages
  • SiCrystal, a ROHM Group Company, and STMicroelectronics Expand a Multi-Year SiC Wafers Supply Agreement

    SiCrystal, a ROHM Group Company, and STMicroelectronics Expand a Multi-Year SiC Wafers Supply Agreement

    2 Min Read

    ROHM and STMicroelectronics announced the expansion of the existing multi-year, long-term 150mm silicon carbide (SiC) substrate wafers supply agreement with SiCrystal, a ROHM group company. The new multi-year agreement governs the supply of larger volumes of SiC substrate wafers manufactured in Nuremberg, Germany, for a minimum expected value of $230 million.

    Geoff West, EVP and Chief Procurement Officer, STMicroelectronics, commented “This expanded agreement with SiCrystal will bring additional volumes of 150mm SiC substrate wafers to support our devices manufacturing capacity ramp-up for automotive and industrial customers worldwide. It helps strengthen our supply chain resilience for future growth, with a balanced mix of in-house and commercial supply across regions”.

    “SiCrystal is a group company of ROHM, a leading company of SiC, and has been manufacturing SiC substrate wafers for many years. We are very pleased to extend this supply agreement with our longstanding customer ST. We will continue to support our partner to expand SiC business by ramping up 150mm SiC substrate wafer quantities continuously and by always providing reliable quality”.said Dr. Robert Eckstein, President and CEO of SiCrystal, a ROHM group company.

    Energy-efficient SiC power semiconductors enable electrification in the automotive and industrial sectors in a more sustainable way. By facilitating more efficient energy generation, distribution and storage, SiC supports the transition to cleaner mobility solutions, lower emissions industrial processes and a greener energy future, as well as more reliable power supplies for resource-intensive infrastructure like data centers dedicated to AI applications.

    Original – STMicroelectronics

    Comments Off on SiCrystal, a ROHM Group Company, and STMicroelectronics Expand a Multi-Year SiC Wafers Supply Agreement
  • Semilab and Fraunhofer IISB Establish a Joint Lab for (U)WBG Metrology

    Semilab and Fraunhofer IISB Establish a Joint Lab for (U)WBG Metrology

    1 Min Read

    Semilab Zrt. and Fraunhofer IISB announced the official kick-off of their strategic partnership.

    Within their new joint lab, located at the IISB in Erlangen, the partners develop state-of-the-art metrology and inspection solutions for (ultra-) wide-bandgap semiconductor materials.

    The goal is to take semiconductor metrology to a next level along the value chain, from base material to die. By bringing new features and tools from lab to market, new standards for SiC, GaN and other (U)WBG semiconductors will be set.

    Original – Fraunhofer IISB

    Comments Off on Semilab and Fraunhofer IISB Establish a Joint Lab for (U)WBG Metrology
  • Virtual Forest Adopts Navitas Semiconductor's GaNFast™ in a Solar-Powered Irrigation Pump

    Virtual Forest Adopts Navitas Semiconductor’s GaNFast™ in a Solar-Powered Irrigation Pump

    2 Min Read

    Navitas Semiconductor announced that Virtual Forest, one of India’s leading electronics design companies specializing in motor control and human interface technologies for consumer appliances, fluid movement and mobility, has adopted its GaNFast™ power integrated circuits (IC) technology for a zero-emission, powerful 3 hp (2,250W) solar-powered irrigation pump.

    For many farmers worldwide, irrigating remote crops requires powerful pumps to lift water from rivers and streams up to field-level, with the majority powered by polluting and noisy diesel generators or expensive, lossy long-distance electrical cables. The Virtual Forest solar pump with maximum power point tracking (MPPT) operates in conjunction with solar panel and energy storage to provide robust, energy-independent and pollution-free performance at the point of use.

    The 3 hp (2,250W) pump is remotely accessed via quad-band IoT with low power consumption. It can raise over 50 gallons-per-minute of water to a height of over 90 feet, enough to water 3 acres of farmland, and help to produce 10 tonnes of wheat. Further, the IoT enabled solar pump ensures optimal water usage through intelligent analytics, therefore minimizing ground water utilization.

    Navitas GaNSense™ half-bridge power ICs monolithically by integrating two GaN power FETs with GaN drivers, level-shifters, protection features and high-efficiency loss-less current sensing. High-efficiency NV6269 half-bridge ICs, in easy-to-use 8×10 mm QFN packages are used in a 3-phase motor inverter, with 3x-5x energy savings vs legacy silicon IGBTs.

    “The $450 million solar-pump market in India is expected to reach $1.5 Bn by 2026, calling for a solar revolution on Indian fields,” said Virtual Forest’s CEO, Omer Basith, adding “Reliable, off-grid systems are critical to overcome food insecurity and achieve energy efficiency. Leveraging Navitas’ high-power, efficient GaNSense™ half-bridge, we seek to deliver a robust solution to the market. We are nurturing our dream to drive gigatons of reduction in carbon emissions, thereby making the world a greener place to live in. Hence, our name — Virtual Forest.”

    “The design team at Virtual Forest adopted the GaNSense half-bridges very quickly, for a fast time-to-market,” said Alessandro Squeri, Navitas’ Senior Sales Director. “With GaNSense, ‘easy-to-use feature, Virtual Forest comes into the partnership with high efficiency, low component count and a robust design for tough environments.”

    Original – Navitas Semiconductor

    Comments Off on Virtual Forest Adopts Navitas Semiconductor’s GaNFast™ in a Solar-Powered Irrigation Pump