Stellantis Tag Archive

  • Ideal Power Moves to Phase 2 to Co-develop a Custom B-TRAN™ Power Module for EVs with Stellantis

    Ideal Power Moves to Phase 2 to Co-develop a Custom B-TRAN™ Power Module for EVs with Stellantis

    3 Min Read

    Ideal Power Inc. announced the successful completion of Phase II deliverables of a product development agreement with Stellantis, a top 10 global automaker.

    Ideal Power is partnering with Stellantis’ advanced technology development team to develop a custom B-TRAN™ power module for use in electric vehicle (“EV”) drivetrain inverters in Stellantis’ next generation EV platform. Due to its compelling advantages, B-TRAN™ is also being evaluated for the automaker’s vehicle power management and EV charging ecosystem.

    All Phase I deliverables were successfully completed including a wafer run and delivery of packaged and tested B-TRAN™ devices and test boards to both Stellantis and the program’s packaging company. Ideal Power also provided technical support, device characterization and test data to Stellantis on B-TRAN™ performance and related drive circuitry. The B-TRAN™ devices delivered to Stellantis outperformed the device performance specifications provided to Stellantis at the beginning of the program.

    All Phase II deliverables were successfully completed ahead of schedule including a wafer run and delivery of tested B-TRAN™ devices and drivers to both the program’s packaging company and the organization building the initial drivetrain inverter. In Phase II, Ideal Power collaborated closely with Stellantis and the program partners to supply B-TRAN™ devices for integration into the custom power module and inverter designs.

    The device testing results by the Stellantis program team validated the expected efficiency improvements anticipated from B-TRAN™ use in the drivetrain and its readiness for implementation in EV applications. Stellantis also approved the comprehensive reliability test plan for automotive qualification provided by Ideal Power.

    Phase III builds on the completion of all Phase I and II deliverables and therefore transitions to Stellantis’ production team. Ideal Power and Stellantis are currently finalizing the scope of work for the next phase of the program. This phase is expected to include the extensive testing of the custom B-TRAN™ module to meet automotive certification standards enabling B-TRAN™ to be the core of the powertrain inverter for the automaker’s next-generation EVs. The objective of this phase is the completion and certification of a production-ready B-TRAN™-based module and is targeted for 2025.

    “We’re thrilled with the success of both Phase I and II and advancement into the next phase of the program with Stellantis. Successful completion of Phases I and II were customer validation of the performance of B-TRAN™ and its potential impact in improving EV range and cost,” said Dan Brdar, President and Chief Executive Officer of Ideal Power. “We are leveraging our success with Stellantis to attract and engage other automobile OEMs and Tier 1 auto suppliers.”

    This program represents Ideal Power’s second engagement with the world’s leading automotive manufacturers as another top 10 global automaker is already in company’s test and evaluation program.

    Original – Ideal Power

    Comments Off on Ideal Power Moves to Phase 2 to Co-develop a Custom B-TRAN™ Power Module for EVs with Stellantis
  • Stellantis Implements Multifaceted Semiconductor Strategy

    Stellantis Implements Multifaceted Semiconductor Strategy

    3 Min Read

    Semiconductors are the linchpin to the performance, safety, and customer features of Stellantis vehicles today and in the new state-of-the-art, BEV-centric STLA vehicle and technology platforms arriving soon. As the auto industry’s demand for semiconductors accelerates, Stellantis is implementing a multifaceted strategy designed to manage and secure the long-term supply of vital microchips. Developed by a cross-functional team, the strategy was created through a rigorous assessment of customer desires for advanced technology features and a keen focus on delivering the objectives laid out in the Stellantis Dare Forward 2030 plan.

    The robust strategy, which is refined continuously, includes:

    • implementation of a semiconductor database to provide full transparency on the semiconductor content;
    • systematic risk assessment to avoid and proactively remove legacy parts;
    • long-term chip level demand forecasting to support capacity securitization agreements with chip makers and Silicon Foundries;
    • implementation and enforcement of a Green List to reduce chip diversity and – in case of future chip shortages – to put Stellantis in control of the allocation; and,
    • the purchasing of mission-critical parts at chip makers including a long-term securitization of chip supply.

    Stellantis has started to engage with strategic semiconductor providers like Infineon, NXP® Semiconductors, onsemi, and Qualcomm to further improve its all-new, state-of-the-art STLA platforms and technologies. In addition, Stellantis is working with aiMotive and SiliconAuto to develop its own differentiating semiconductors in the future.

    “An effective semiconductor strategy requires a deep understanding of semiconductors and the semiconductor industry,” said Maxime Picat, Chief Purchasing and Supply Chain Officer at Stellantis. “We have hundreds of very different semiconductors in our cars.

    We have built a comprehensive ecosystem to mitigate the risk that one missing chip can stop our lines. At the same time, key vehicle capabilities directly depend on the innovation and performance of single devices. SiC MOSFETS extend the range of our electric vehicles while the computation performance of a leading-edge SoC is essential for the customer experience and safety.”

    To date, Stellantis has entered into direct agreements for semiconductors with a purchasing value of more than €10 billion through 2030. The supply agreements cover a variety of vital microchips, including:

    • Silicon Carbide (SiC) MOSFETS, which are fundamental to the range of EVs.
    • Microcontroller Unit (MCU), a key part of the computing zones for the STLA Brain electrical architecture.
    • System-on-a-chip (SoC), where performance is essential for the high-performance computing (HPC) units that deliver the in-vehicle infotainment and autonomous driving assist functions.

    Semiconductors play key roles in the vehicles that are driving the Stellantis transformation into a sustainable mobility tech company, as outlined in Dare Forward 2030. This includes enabling features and functions in the BEV-native STLA global platforms (Small/Medium/Large/Frame) and the seamless connectivity, remote upgradability, and the flexible service-oriented electrical/electronic architecture that underpins the STLA Brain, STLA SmartCockpit, and STLA AutoDrive artificial intelligence-powered platforms.

    Original – Stellantis

    Comments Off on Stellantis Implements Multifaceted Semiconductor Strategy