-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG2 Min Read
SemiQ Inc has announced a family of three 1200V SiC full-bridge modules, each integrating two of the company’s rugged high-speed switching SiC MOSFETs with reliable body diode. The modules have been developed to simplify the development of photovoltaic inverters, energy storage, battery charging and other high-frequency DC applications.
Available in 18, 38 and 77mΩ (RDSon) variants, the modules have been tested at voltages exceeding 1350V and deliver a continuous drain current of up to 102A, a pulsed drain current of up to 250A and a power dissipation of up to 333W.
Operational with a junction temperature of up to 175oC, the rugged B2 modules have exceptionally low switching losses (EON 0.13mJ, EOFF 0.04mJ at 25oC – 77mΩ module), low zero-gate voltage drain/gate source leakage (0.1µA/1nA – all modules) and low junction to case thermal resistance (0.4oC per watt – 18mΩ module).
“By integrating high-speed SiC MOSFETs with exceptional performance and reliability, our new QSiC 1200V family of full-bridge modules sets a new standard for power density and efficiency in demanding DC applications. This family of modules simplifies system design, and enables faster time-to-market for next-generation solar, storage, and charging solutions,” said Seok Joo Jang, Director of Module Engineering at SemiQ.
Available immediately, the modules can be mounted directly to a heat sink, are housed in a 62.8 x 33.8 x 15.0mm package (including mounting plates) with press fit terminal connections and split DC negative terminals.
Original – SemiQ
-
LATEST NEWS / WBG1 Min Read
Navitas Semiconductor’s 8.5kW power supply unit (PSU), powered by GaNFast™ and GeneSiC™ technologies, has been recognized for its innovative design. Tailored for AI and hyperscale data centers, the PSU achieves 98% efficiency while meeting Open Compute Project (OCP) and Open Rack v3 (ORv3) specifications.
The design minimizes ripple current, EMI, and device count by 25%, reducing costs. Its 3-phase LLC topology utilizes GaNSafe™ technology with integrated control, drive, sensing, and protection, along with Gen-3 Fast SiC MOSFETs for enhanced performance and reliability.
Original – Navitas Semiconductor
-
LATEST NEWS / PROJECTS / SiC / WBG2 Min Read
Mitsubishi Electric Corporation will begin developing a prototype to demonstrate a junction-temperature estimation technology for power modules, which it is pursuing as a partner in the European Union’s Horizon Europe project aimed at developing advanced power modules and improving cost efficiency of renewable-energy power-generation.
The company is participating through its European subsidiary Mitsubishi Electric R&D Centre Europe B.V., which has joined the project, called Flagship Advanced Solutions for Condition and Health Monitoring in Power Electronics (FLAGCHIP).
In the global effort to expand the introduction of renewable energy to support carbon neutrality, the need to upgrade the reliability and maintenance of electronic devices for power conversion has become increasingly important. In particular, attention is being focused on technological innovations aimed at strengthening power module reliability and improving data acquisition and analysis methods to accurately determine degradation conditions in order to carry facilitate more timely maintenance.
The FLAGCHIP project currently involves 11 companies and academic institutions from nine European countries engaged in developing advanced power modules, condition and health monitoring technologies, and devising methods for calculating cost efficiency of renewable-energy power-generation systems and reducing associated costs. Demonstrations of wind-power and solar-power generation systems using these technologies and methods will be conducted at test facilities owned by project partners in Norway and France.
Mitsubishi Electric will be in charge of demonstrating a technology that estimates the junction temperature of silicon carbide metal-oxide-semiconductor field-effect transistor (SiC-MOSFET) semiconductor chips inside the power module, which will provide necessary data for accurately estimating module degradation.
Starting in October 2026, the demonstration will use the newly developed prototype at a test facility in France where direct current (DC) voltage is converted to a specific DC voltage for a wind-power generation system.
Original – Mitsubishi Electric
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG2 Min Read
Vishay Intertechnology, Inc. introduced 16 new 650 V and 1200 V silicon carbide (SiC) Schottky diodes in the industry-standard SOT-227 package. Designed to deliver high speed and efficiency for high frequency applications, the Vishay Semiconductors devices offer the best trade-off between capacitive charge (QC) and forward voltage drop for diodes in their class.
The devices consist of 40 A to 240 A dual diode components in a parallel configuration, and 50 A and 90 A single phase bridge devices. Built on state of the art thin wafer technology, the diodes feature a low forward voltage drop down to 1.36 V that dramatically reduces conduction losses for increased efficiency. Further increasing efficiency, the devices offer better reverse recovery parameters than Si-based diodes and have virtually no recovery tail.
Typical applications for the components will include AC/DC PFC and DC/DC ultra high frequency output rectification in FBPS and LLC converters for photovoltaic systems, charging stations, industrial UPS, and telecom power supplies. In these applications, the diodes’ low QC down to 56 nC allows for high speed switching, while their industry-standard package offers a drop-in replacement for competing solutions.
The diodes deliver high temperature operation to +175 °C and a positive temperature coefficient for easy parallelling. UL-approved to file E78996, the devices feature a large creepage distance between terminals and a simplified mechanical design for rapid assembly.
Original – Vishay Intertechnology