-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG2 Min Read
Many industrial applications today are moving towards higher power levels with minimized power losses. One way to achieve this is to increase the DC link voltage. Infineon Technologies AG is addressing this market trend with the CoolSiC™ Schottky diode 2000 V G5 product family, the first discrete silicon carbide diodes with a breakdown voltage of 2000 V, introduced in September 2024.
The product portfolio has now been expanded to include a Schottky diode in the TO-247-2 package, which is pin-compatible with most existing TO-247-2 packages. The product family fits perfectly for applications with DC link voltages up to 1500 V DC, making it ideal for solar and EV chargers.
The CoolSiC Schottky diode 2000 V G5 in the TO-247-2 package is available with current ratings ranging from 10 to 80 A. It allows developers to achieve higher power levels in their applications while reducing the component count by half compared to 1200 V solutions. This simplifies the overall design and facilitates a seamless transition from multi-level to two-level topologies.
In addition, the Schottky diode in the TO-247-2 package incorporates .XT interconnection technology, which significantly reduces thermal resistance and impedance, thereby enhancing heat management. Humidity robustness has been validated through HV-H3TRB reliability testing. The diodes exhibit neither reverse recovery nor forward recovery, and feature a low forward voltage, ensuring improved system performance.
The 2000 V diode family is a perfect match for the CoolSiC MOSFETs 2000 V in the TO-247Plus-4 HCC package that Infineon launched in the spring of 2024. In addition to the TO-247-2 package, the CoolSiC Schottky Diode 2000 V is also available in the TO-247PLUS-4 HCC package.
Original – Infineon Technologies
-
LATEST NEWS / PRODUCT & TECHNOLOGY2 Min Read
Infineon Technologies AG announced the addition of P-channel power MOSFETs to its family of radiation-tolerant power MOSFETs for Low-Earth-Orbit (LEO) space applications. The new devices are part of Infineon’s expanding portfolio designed for next-generation “NewSpace” applications, providing cost-optimized radiation-tolerant MOSFETs that enable engineers to achieve faster time-to-market designs using smaller and lighter weight components with radiation performance suitable for missions lasting two to five years.
“Successful deployment of next-generation LEO satellite constellations and other space-ready systems require radiation-tolerant discretes and ICs with lead times and production volumes that enable rapid deployment and cost optimization,” said Chris Opoczynski, Sr. VP and General Manager, High Reliability (HiRel) Business, Power and Sensor Systems Division, Infineon . “Infineon is leveraging its 50-years of space heritage to bring an industry-first portfolio of efficient and reliable power devices to this dynamic sector of the business.”
The new 60 V P-channel MOSFET complements the already available 60 V and 150 V N-channel devices, all offered in plastic packaging, which is lower in cost than the traditional hermetic packaging used in rad-hardened devices and can be produced in higher volumes using standard manufacturing practices.
The radiation-tolerant discretes are qualified for space applications according to the relevant tests of the AEC-Q101 standard. Additional package tests such as outgas and salt atmosphere tests are included as part of the qualification, and they are rated for Single Event Effects (SEE) at 46 MeV∙cm²/mg LET and a Total Ionizing Dose (TID) of 30 to 50 krad (Si). The operating temperature rating is -55 °C to 175 °C (maximum). State-of-the-art technologies, like the patented CoolMOS™ superjunction technology used for the N-channel MOSFETs enables Field Effect Transistors (FETs) from Infineon to offer fast switching capabilities as compared to alternative solutions.
Original – Infineon Technologies
-
GaN / LATEST NEWS / WBG2 Min Read
Manufacturers of cutting-edge audio equipment constantly seek to enhance sound quality while also meeting the growing demand for compact, lightweight, more integrated, and energy-efficient designs. At the same time, they must ensure seamless connectivity, cost-effectiveness, and user-friendly functionality, making audio product development more complex than ever.
To overcome these challenges, SounDigital has integrated CoolGaN™ transistors from Infineon Technologies AG into its new 1500 W Class D amplifier, featuring an 800 kHz switching frequency and five channels. Infineon’s advanced GaN technology has improved the energy efficiency of the amplifier by five percent and reduced energy loss by 60 percent.
“We are excited to enhance the performance of our audio amplifiers using Infineon’s GaN power semiconductors, enabling us to inspire people and provide entertainment by amplifying music around the world,” said Juliano Anflor, CEO of SounDigital. “GaN transistors significantly enhances our overall system performance with minimized system cost and increased ease of use.”
“GaN technology is transforming the audio amplifier industry, providing unparalleled efficiency and performance,” said Johannes Schoiswohl, Head of the GaN Business Line at Infineon. “Infineon’s leading GaN solutions deliver superior sound quality, higher power density, and reduced energy consumption, enabling SounDigital’s audio systems to reach new levels of fidelity and performance.”
For its 1500 W Class D amplifier, SounDigital selected Infineon’s 100 V normally-off E-mode transistors: IGC033S101 in a PQFN-3×5 package and IGB110S101 in a PQFN-3×3 package. With their low on-resistance, the transistors are ideal for demanding high-current applications, enabling significant improvements in both sound quality and efficiency of SounDigital’s amplifier.
The GaN-based amplifier also delivers high performance while reducing power dissipation by 75 W, allowing for a 50 percent smaller heat sink. Additionally, the overall system size has been reduced by 40 percent without compromising performance. The audio quality has been further improved by the CoolGaN transistors, with total harmonic distortion (THD) reduced by 70 percent, enabling a more precise and detailed sound experience. At the same time, the idle current has been reduced by 40 percent, significantly improving energy efficiency.
Original – Infineon Technologies
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG2 Min Read
Gallium Nitride (GaN) technology plays a crucial role in enabling power electronics to reach the highest levels of performance. However, GaN suppliers have thus far taken different approaches to package types and sizes, leading to fragmentation and lack of multiple footprint-compatible sources for customers.
Infineon Technologies AG addresses this challenge by announcing the high-performance gallium nitride CoolGaN™ G3 Transistor 100 V in RQFN 5×6 package (IGD015S10S1) and 80 V in RQFN 3.3×3.3 package (IGE033S08S1).
“The new devices are compatible with industry-standard silicon MOSFET packages, meeting customer demands for a standardized footprint, easier handling and faster-time-to-market,” said, Dr. Antoine Jalabert, Product Line Head for mid-voltage GaN at Infineon.
The CoolGaN G3 100 V Transistor devices will be available in a 5×6 RQFN package with a typical on-resistance of 1.1 mΩ. Additionally, the 80 V transistor in a 3.3×3.3 RQFN package has a typical resistance of 2.3 mΩ. These transistors offer a footprint that, for the first time, allows for easy multi-sourcing strategies and complementary layouts to Silicon-based designs. The new packages in combination with GaN offer a low-resistance connection and low parasitics, enabling high performance transistor output in a familiar footprint.
Moreover, this chip and package combination allows for high level of robustness in terms of thermal cycling, in addition to improved thermal conductivity, as heat is better distributed and dissipated due to the larger exposed surface area and higher copper density.
Samples of the GaN transistors IGE033S08S1 and IGD015S10S1 in RQFN packages will be available in April 2025.
Original – Infineon Technologies