• Wolfspeed to Expand Existing Long-Term SiC Wafer Supply Agreement with a Leading Global Semiconductor Company

    Wolfspeed to Expand Existing Long-Term SiC Wafer Supply Agreement with a Leading Global Semiconductor Company

    2 Min Read

    Wolfspeed, Inc. announced the expansion of an existing long-term silicon carbide wafer supply agreement with a leading global semiconductor company. The expanded agreement, which is now worth approximately $275 million in total, calls for Wolfspeed to supply the company with 150mm silicon carbide bare and epitaxial wafers, reinforcing both companies’ visions for an industry-wide transition from silicon to silicon carbide semiconductor power devices.

    “As the global leader in silicon carbide wafer production, Wolfspeed is uniquely positioned to be a critical supplier of high-quality and advanced silicon carbide materials at scale. We will continue to be an important partner to power device manufacturers who need the highest-quality silicon carbide wafers to service their customers,” said Dr. Cengiz Balkas, SVP and GM of Materials for Wolfspeed.

    “This agreement further strengthens our long-time partnership with a best-in-class power semiconductor manufacturer. Our collective efforts are helping to address the rapidly expanding opportunity for silicon carbide and better address the unfulfilled demand that exists in the marketplace today.”

    The adoption of silicon carbide-based power solutions is rapidly growing across multiple markets, including industrial and EVs. Silicon carbide solutions enable smaller, lighter and more cost-effective designs, converting energy more efficiently to unlock new applications in electrification. This supply agreement will enable silicon carbide applications in a broad range of industries, such as: renewable energy and storage, electric vehicles, charging infrastructure, industrial power supplies, traction and variable speed drives.

    Wolfspeed is the global leader in the manufacturing of silicon carbide wafers and epitaxial wafers. The company is currently expanding its manufacturing capacity in the United States and has plans to open a new, automated materials factory in Siler City, North Carolina later this year that will produce 200mm silicon carbide wafers. The new materials factory will increase Wolfspeed’s current materials production capacity by ten times.

    Original – Wolfspeed

    Comments Off on Wolfspeed to Expand Existing Long-Term SiC Wafer Supply Agreement with a Leading Global Semiconductor Company
  • JEDEC Solid State Technology Association Published JEP198 Guideline for Reverse Bias Reliability Evaluation Procedures for GaN Power Conversi

    JEDEC Solid State Technology Association Published JEP198: Guideline for Reverse Bias Reliability Evaluation Procedures for GaN Power Conversion Devices

    2 Min Read

    JEDEC Solid State Technology Association announced the publication of JEP198: Guideline for Reverse Bias Reliability Evaluation Procedures for Gallium Nitride Power Conversion Devices.  Developed by JEDEC’s JC-70.1 Gallium Nitride Subcommittee, JEP198 is available for free download from the JEDEC website.

    JEP198 presents guidelines for evaluating the Time Dependent Breakdown (TDB) reliability of GaN power transistors. It is applicable to planar enhancement-mode, depletion-mode, GaN integrated power solutions, and cascode GaN power transistors.

    This publication covers suggested stress conditions and related test parameters for evaluating the TDB reliability of GaN power transistors using the off-state bias. The stress conditions and test parameters for both High Temperature Reverse Bias Stress and Application Specific Stress-Testing are designed to evaluate the reliability of GaN transistors over their useful lifetime under accelerated stress conditions.  

    “We are becoming more dependent on power electronics in all facets of our daily lives. As such, the technologies behind those systems are advancing and so too must the device-specific qualification processes. The new GaN-focused Guideline for Reverse Bias Reliability Evaluation is a critical step toward achieving that goal,” said Ron Barr, VP of Quality and Reliability, Transphorm and Co-Chair of the Task Group 701_1.

    “This was a collaborative effort conducted by both GaN semiconductor and end product manufacturers. I’m proud of the work the task group delivered. It is an important framework to ensure cross-industry uniformity that will, in the end, provide power system manufacturers the necessary confidence when designing with GaN devices.”

    “With the rise of renewable energy and electrification of our lives, the efficiency of power semiconductors is becoming more critical. This is where GaN power semiconductors have proven to be a valuable technology. The Guideline for Reverse Bias Reliability Evaluation is another step in improving confidence in GaN Technology and the products that are on and being brought to market,” said Dr. Kurt Smith, VP of Reliability and Qualification at VisIC Technologies and Chair of JC-70.1.

    “This document was developed through collaboration of the multi-corporation team of industry experts to represent the best practices for evaluating GaN devices. It was a long multi-year process to reach consensus and the team is to be commended for the quality document and all of the hard work that went into it.”

    Original – JEDEC

    Comments Off on JEDEC Solid State Technology Association Published JEP198: Guideline for Reverse Bias Reliability Evaluation Procedures for GaN Power Conversion Devices
  • MIT, Applied Materials, and Northeast Microelectronics Coalition Hub to Create a Unique Open-Access Semiconductor Site

    MIT, Applied Materials, and Northeast Microelectronics Coalition Hub to Create a Unique Open-Access Semiconductor Site

    5 Min Read

    MIT and Applied Materials, Inc. announced an agreement today that, together with a grant to MIT from the Northeast Microelectronics Coalition (NEMC) Hub, commits more than $40 million of estimated private and public investment to add advanced nano-fabrication equipment and capabilities to MIT.nano, the Institute’s center for nanoscale science and engineering.

    The collaboration will create a unique open-access site in the United States that supports research and development at industry-compatible scale using the same equipment found in high-volume production fabs to accelerate advances in silicon and compound semiconductors, power electronics, optical computing, analog devices and other critical technologies.

    The equipment and related funding and in-kind support provided by Applied Materials will significantly enhance MIT.nano’s existing capabilities to fabricate up to 200mm (8-inch) wafers, a size essential to industry prototyping and production of semiconductors used in a broad range of markets including consumer electronics, automotive, industrial automation, clean energy and more. Positioned to fill the gap between academic experimentation and commercialization, the equipment will help establish a bridge connecting early-stage innovation to industry pathways to the marketplace.

    “A brilliant new concept for a chip won’t have impact in the world unless companies can make millions of copies of it. MIT.nano’s collaboration with Applied Materials will create a critical open-access capacity to help innovations travel from lab bench to industry foundries for manufacturing,” said Maria Zuber, MIT’s Vice President for Research and E. A. Griswold Professor of Geophysics. “I am grateful to Applied Materials for its investment in this vision. The impact of the new toolset will ripple across MIT and throughout Massachusetts, the region, and the nation.”

    Applied Materials is the world’s largest supplier of equipment for manufacturing semiconductors, displays and other advanced electronics. The company will provide at MIT.nano several state-of-the-art process tools capable of supporting 150 and 200mm wafers and will enhance and upgrade an existing tool owned by MIT. In addition to assisting MIT.nano in the day-to-day operation and maintenance of the equipment, Applied engineers will develop new process capabilities which will benefit researchers and students from MIT and beyond.

    “Chips are becoming increasingly complex, and there is tremendous need for continued advancements in 200mm devices, particularly compound semiconductors like silicon carbide and gallium nitride,” said Aninda Moitra, Corporate Vice President and General Manager of Applied Materials’ ICAPS Business. “Applied is excited to team with MIT.nano to create a unique, open-access site in the U.S. where the chip ecosystem can collaborate to accelerate innovation. Our engagement with MIT expands Applied’s university innovation network and furthers our efforts to reduce the time and cost of commercializing new technologies while strengthening the pipeline of future semiconductor industry talent.”

    The Northeast Microelectronics Coalition (NEMC) Hub, managed by the Massachusetts Technology Collaborative (MassTech), will allocate $7.7 million to enable the installation of the tools. The NEMC is the regional “hub” that connects and amplifies the capabilities of diverse organizations from across New England plus New Jersey and New York. The U.S. Department of Defense (DoD) selected the NEMC Hub as one of eight Microelectronics Commons Hubs and awarded funding from the CHIPS and Science Act to accelerate the transition of critical microelectronics technologies from lab-to-fab, spur new jobs, expand workforce training opportunities and invest in the region’s advanced manufacturing and technology sectors.

    The Microelectronics Commons program is managed at the federal level by the Office of the Under Secretary of Defense for Research and Engineering (OUSD(R&E)) and the Naval Surface Warfare Center, Crane Division, and facilitated through the National Security Technology Accelerator (NSTXL), which organizes the execution of the eight regional hubs located across the country. The announcement of the public sector support for the project was made at an event attended by leaders from the DoD and NSTXL during a site visit to meet with NEMC Hub members.

    “The installation and operation of these tools at MIT.nano will have a direct impact on the members of the NEMC Hub, the Massachusetts and Northeast regional economy, and national security. This is what the CHIPS and Science Act is all about,” said Ben Linville-Engler, Deputy Director at the MassTech Collaborative and the interim director of the NEMC Hub. “This is an essential investment by the NEMC Hub to meet the mission of the Microelectronics Commons.”

    MIT.nano is a 200,000 square-foot facility located in the heart of the MIT campus with pristine, class-100 cleanrooms capable of accepting these advanced tools. Its open-access model means that MIT.nano’s toolsets and laboratories are available not only to the campus but also to early-stage R&D by researchers from other academic institutions, non-profit organizations, government and companies ranging from Fortune 500 multinationals to local startups. Vladimir Bulović, faculty director of MIT.nano, said he expects the new equipment to come online in early 2025.

    “With vital funding for installation from NEMC and after a thorough and productive planning process with Applied Materials, MIT.nano is ready to install this toolset and integrate it into our expansive capabilities that serve over 1,100 researchers from academia, startups, and established companies,” said Bulović, who is also the Fariborz Maseeh Professor of Emerging Technologies in MIT’s Department of Electrical Engineering and Computer Science (EECS). “We’re eager to add these powerful new capabilities and excited for the new ideas, collaborations, and innovations that will follow.”

    As part of its arrangement with MIT.nano, Applied Materials will join the MIT.nano Consortium, an industry program comprising 12 companies from different industries around the world. With the contributions of the company’s technical staff, Applied Materials will also have the opportunity to engage with MIT’s intellectual centers, including continued membership with the Microsystems Technology Laboratories (MTL).

    Original – Applied Materials

    Comments Off on MIT, Applied Materials, and Northeast Microelectronics Coalition Hub to Create a Unique Open-Access Semiconductor Site
  • Power Integrations Released InnoSwitch™5-Pro Family of High-Efficiency Programmable Flyback Switcher ICs

    Power Integrations Released InnoSwitch™5-Pro Family of High-Efficiency Programmable Flyback Switcher ICs

    2 Min Read

    Power Integrations announced the release of the InnoSwitch™5-Pro family of high-efficiency, programmable flyback switcher ICs. The single-chip switcher achieves over 95 percent efficiency with a novel secondary-side control scheme which achieves zero-voltage switching (ZVS) without a dedicated and costly additional high voltage switch.

    The new IC, which features a 750 V or a 900 V PowiGaN™ primary switch, primary-side controller, FluxLink™ isolated feedback and secondary controller with an I2C interface, optimizes the design and manufacture of compact, highly efficient single- or multi-port USB PD adapters. Applications are notebooks, high-end cellphones and other portable consumer products, including designs that require the new USB PD EPR (Extended Power Range) protocol.

    Adnaan Lokhandwala, senior product marketing manager at Power Integrations said: “The combination of ZVS and GaN is power supply magic. Switching losses vanish, and we can leverage the low conduction losses of GaN to implement super dense adapter layouts with far fewer components than asymmetric half-bridge (AHB) circuits or active clamp alternatives. For example, we have demonstrated 140 W / 28 V USB PD adapters in 4.2 cubic inches using only 106 components. The flyback topology used by InnoSwitch5-Pro ICs is much easier to implement than AHB and can also operate from universal mains with or without a PFC stage.”

    InnoSwitch5-Pro flyback switcher ICs feature lossless input line voltage sensing on the secondary side for adaptive DCM/CCM and ZVS control to maximize efficiency and simplify design across line and load. The ICs also feature a post-production tolerance offset to facilitate accurate output constant-current (CC) control of better than two percent to support the UFCS protocol.

    Excellent efficiency – better than 95 percent – allows designers to eliminate heat sinks, spreaders and potting materials for thermal management, further reducing size, weight, component cost and manufacturing complexity. Key markets for the InnoSwitch5-Pro family of flyback switcher ICs include high-density USB PD 3.1 Extended Power Range (EPR), UFCS and multi-protocol adapters, notebook adapters and after-market single- and multi-port chargers and adapters.

    Original – Power Integrations

    Comments Off on Power Integrations Released InnoSwitch™5-Pro Family of High-Efficiency Programmable Flyback Switcher ICs
  • TTI to Distribute PANJIT Semiconductors

    TTI to Distribute PANJIT Semiconductors

    2 Min Read

    TTI, Inc. announced that the company is now an authorized distributor of PANJIT semiconductors. TTI is excited to now stock PANJIT’s high performance semiconductor products, giving electronics designers access to a wider range of components to suit their needs.

    “We are excited to embark on a global partnership agreement with PANJIT which will further strengthen our portfolio of discrete components, bringing a leading range of diodes, MOSFETs, protection devices, Bipolar Junction Transistors, SiC devices, and ICs to our customers across many industrial and transportation applications,” said John Drabik, President TTI Americas.

    “PANJIT’s vision is to power the world with our reliable and energy-efficient products, bringing people a greener and smarter future,” says Edgar Chen, COO at PANJIT. “It is a great honor to partner with TTI globally as we unite to expand the reach of our innovative discrete and IC products to a wider audience.”

    TTI is committed to delivering the right part at the right time to its customers. The introduction of PANJIT products to TTI’s portfolio means designers now have access to a wider selection of semiconductor products, all available from one source, so they can find the perfect parts for their application.

    PANJIT has built an enviable reputation for manufacturing reliable semiconductor components, including MOSFET, Schottky, ESD , Diodes, TVS, SiC devices, bipolar junction transistors, bridges, , Fast Recovery Diodes, and ICs, which are ideal for markets such as industrial, automotive, power management and communication & networking.

    Original – PANJIT International

    Comments Off on TTI to Distribute PANJIT Semiconductors
  • PANJIT Introduced New P-Channel and N-Channel MOSFETs to Boost Automotive Electronic Systems

    PANJIT Introduced New P-Channel and N-Channel MOSFETs to Boost Automotive Electronic Systems

    2 Min Read

    PANJIT introduced new P-channel and N-channel MOSFETs designed to boost automotive electronic systems. The P-channel MOSFETs, with AEC-Q101 qualification and a high 175°C junction temperature, offer optimal choices for design engineers seeking reliability and simplified circuitry. These MOSFETs, minimizing RDS(ON) and maximizing avalanche ruggedness, are available in flexible packages (DFN3333-8L, DFN5060-8L, DFN5060B-8L, TO-252AA, TO-263, and TO-263-7L).

    PANJIT’s N-channel power MOSFETs employ advanced trench technology, delivering excellent figure of merit (FOM), lower RDS(ON), and capacitance. Available in low-profile packages (DFN3333-8L, DFN5060-8L, DFN5060B-8L, TO-252AA), these MOSFETs contribute to efficient and reliable PCB layouts.
    By combining innovation with reliability, PANJIT’s low voltage MOSFETs simplify power design circuitry, addressing the evolving needs of automotive design engineers.

    These components are a testament to PANJIT’s commitment to shaping the future of automotive electronics, offering optimal solutions for high-performance automotive applications.

    Key Features of 30V & 40V Automotive-Grade P-Channel MOSFET:

    • P-channel enhancement mode logic level MOSFETs
    • Low RDS(ON) to minimize conduction losses
    • Package with low thermal resistance
    • 100% unclamped inductive switching (UIS) tested
    • Electrostatic sensitive device (ESD) capable
    • AEC-Q101 qualified and PPAP capable
    • 175°C operating junction temperature
    • Available in TO-263-7L Package

    Key Features of 30V & 40V Automotive-Grade N-Channel MOSFET:

    • 30V & 40V N-channel advanced trench
    • Low RDS(ON) to minimize conduction losses
    • Low FOM to minimize driver losses
    • Standard and logic level available
    • AEC-Q101 qualified and PPAP capable
    • 175°C operating junction temperature

    Original – PANJIT International

    Comments Off on PANJIT Introduced New P-Channel and N-Channel MOSFETs to Boost Automotive Electronic Systems
  • Navitas Semiconductor Invites Visitors to APEC 2024

    Navitas Semiconductor Invites Visitors to APEC 2024

    3 Min Read

    Navitas Semiconductor invites visitors to experience “Planet Navitas” and collaborate to “Electrify Our World” at APEC 2024 (Long Beach, CA, February 26th-29th, 2024).

    Since its inception in 1985, the Applied Power Electronics Conference (APEC) has become the world’s premier event in power electronics, with high-caliber, peer-reviewed technical content from industry and academia. The APEC 2016 keynote by Dan Kinzer, COO / CTO and co-founder, was the public debut for start-up Navitas and GaNFast power ICs.

    Following the mission to “Electrify our World™”, the “Planet Navitas” exhibition booth invites visitors to discover how next-gen GaN and SiC technology enable the latest solutions for fully-electrified housing, transportation and industry. Examples range from TV power to home-appliance motors and compressors, EV charging, solar/micro-grid installations, and on to data center power systems. Each example highlights end-user benefits, such as increased portability, longer range, faster charging, and grid-independence, plus a focus on how low-carbon-footprint GaN and SiC technology can save over 6 Gtons/yr CO2 by 2050.

    “APEC is a significant event in the power industry calendar, with an intense schedule of customer discussions on new technologies and systems,” said Mr. Kinzer. “Complementary GaNFast™ and GeneSiC™ portfolios, with comprehensive, application-specific system design support accelerates customer time-to-market with sustainable performance advantages. ‘Planet Navitas’ represents the very real, inspiring implementation of GaN & SiC across the vast $22B/year market opportunity.”

    Major technology updates and releases include GaNSafe – the world’s most-protected, most-reliable and highest-performance GaN power, Gen-4 GaNSense Half-Bridge ICs – the most integrated GaN devices, Gen-3 Fast SiC power FETs – for high-power performance, and breakthrough bi-directional GaN for game-changing motor drive and energy-storage applications.

    APEC 2024 will take place at the Long Beach Convention & Entertainment Center, 300 East Ocean Boulevard, Long Beach, CA 90802, with exhibition running from February 26th – 28th. “Planet Navitas” is featured at booth #1353.

    Technical presentations:

    • Tuesday 27th February
      • “Reducing System Cost with GaN HEMTs in Motor Drive Applications”
        • 8:55am, IS05.2, Alfred Hesener, Sr. Dir. Industrial & Consumer
        • 10:40am, PSTT02.6, Bin Li, Dir. Applications
        • 11:40am, PSTT01.9, Xiucheng Huang, Sr. Director
        • 3:45pm, exhibitor presentation, location: 101B
        “A High Density 400 W DC/DC Power Module with Integrated Planar Transformer and Half Bridge GaN IC”“An Optimization Method for Planar Transformer Winding Losses in GaN Based Multi-Output Flyback Converter”“Electrify Our World” with Next-gen GaNFast and GeneSiC Power, Dan Kinzer
    • Thursday 29th February
      • “SiC & Package Innovations in Power Modules”
        • 8:30am-11:20am, IS19, Stephen Oliver, Session Chair.
        • 8:55am, PSTIS21.2, Tom Ribarich, Sr Dir. Strategic Marketing
        • 1:30pm-3:10pm, IS27, Llew-Vaughan-Edmunds, Session Chair
        • 2:20pm, IS27-3, Stephen Oliver, VP Corp Mktg & IR, and Llew Vaughan-Edmunds, Sr Dir. GeneSiC
        “GaN Half-Bridge Power IC and AHB/Totem-Pole Topologies Enable 240W, 150cc, PD3.1 Solution with 95.5% Efficiency”“Emerging Applications for Power Electronics”“High-Voltage SiC Optimized for Megawatt Charging in EV Long-haul Trucking”

    Student Job Fair:

    • From Los Angeles to Shanghai, careers at Navitas span cutting-edge IC design and innovative applications engineering to pioneering research and ensuring customer success and revenue growth. Meet the experts and join the team!
      • Tuesday, February 27, 1:30pm-5pm, Regency Ballroom ABC of the Hyatt Regency hotel, right next to the Long Beach Convention Center, with Shaun Sandera, Sr. Human Resources Manager

    To schedule a meeting with the Navitas team, email info@navitassemi.com, or select from the bookings calendars below:

    Customer (Private Room): https://bit.ly/navitas-apec-24-customer-private-room
    Customer Meeting (On-Booth): https://bit.ly/navitas-apec-24-customer-on-booth

    Original – Navitas Semiconductor

    Comments Off on Navitas Semiconductor Invites Visitors to APEC 2024
  • Moov Launches Equipment Management Software for Semiconductor Manufacturers

    Moov Launches Equipment Management Software for Semiconductor Manufacturers

    3 Min Read

    Moov, the largest and fastest-growing global marketplace for used semiconductor equipment, announced the release of its new Equipment Management Software (EMS) for semiconductor manufacturers. Moov’s Equipment Management Software helps manufacturers track and understand what equipment assets they own across fabrication centers (fabs), the condition of these tools, and the resale value of these assets based on data from Moov’s global marketplace.

    Today, semiconductor manufacturers have limited insight into the equipment they own across fabs, its condition, and how to maximize its value once it is considered depreciated and/or has outlived its initial production line.

    In building EMS, Moov will continue to help manufacturers operationalize a more data-driven approach to deciding how to leverage idle or underutilized capital equipment – whether that means transferring equipment between fabs, scrapping equipment, selling parts, or selling whole systems to maximize the lifetime value of these assets.

    “Semiconductor manufacturers have neither the tools nor the data to make informed decisions on what to do with capital equipment assets that may be depreciated on their books but still have real market value,” said Moov cofounder and CEO, Steven Zhou.

    “Moov’s Equipment Management Software helps manufacturers gain a unified view of their equipment across fabs and augments equipment data with marketplace data pulling from millions of data points on pricing, supply, demand, geography, installed base, and more to help chipmakers make strategic decisions on how to maximize the value of these financial assets based on true market conditions.”

    To help manufacturers simplify the process of deploying EMS across fabs, Moov is offering free equipment audits and data onboarding. Moov will audit and inspect tools across a manufacturer’s fabs, and document tool make, model, location, condition, and specifications in the EMS. Once a manufacturer’s assets are tracked in the EMS, the system will automatically pull in data on pricing and demand from Moov’s global marketplace for used semiconductor manufacturing equipment.

    Manufacturers can then leverage this holistic view of their assets, which are indexed and easily searchable across locations, to decide what to do with underutilized equipment and parts. If manufacturers decide to sell assets, they can easily do so in 2-clicks through a direct integration with Moov’s global resale marketplace.

    “We’re taking all of the legwork out of implementing a holistic system for tracking semiconductor manufacturing equipment across fabs, in order to empower manufacturers to reduce waste and redundancies, more quickly respond to shifting needs from fab to fab, and maximize the value of assets that may have hitherto been considered a write-off but have substantial market value,” said Zhou. 

    Historically, what to do with depreciated equipment has been considered an afterthought by chipmakers as the process of reselling equipment was onerous and fragmented, and the resale value of equipment low. However, equipment delays and shortages of the pandemic era, the rising demand for 200mm capacity, and changing procurement habits of manufacturers to diversify their capital equipment supply chains, have led to a surge in the resale value of semiconductor manufacturing equipment.

    At the same time, increased market pressures to improve both the financial and environmental sustainability of fabs has created the need for a better approach to maximizing the value of these 6-figure+ assets throughout their lifecycle.

    “With access to the world’s largest data set for the resale value of semiconductor manufacturing equipment, we felt it was our responsibility to build technology to help manufacturers better incorporate this data into their day-to-day decision-making process,” said Zhou.

    Original – Moov

    Comments Off on Moov Launches Equipment Management Software for Semiconductor Manufacturers
  • Infineon Technologies will Provide Sinexcel with Industry-Leading CoolSiC MOSFETs

    Infineon Technologies will Provide Sinexcel with Industry-Leading CoolSiC MOSFETs

    3 Min Read

    Infineon Technologies AG announced a partnership with Shenzhen based Sinexcel Electric Co., Ltd., a global leader in core power equipment and solutions for the Energy Internet. Infineon will provide Sinexcel with its industry-leading 1200 V CoolSiC™ MOSFET power semiconductor devices in combination with EiceDRIVER™ compact 1200 V single-channel isolated gate drive ICs to further improve the efficiency of energy storage systems.

    Driven by the carbon peaking and carbon neutrality strategy and the new energy wave, the domestic energy storage market has maintained sustained and rapid development in recent years. According to the Chinese Ministry of Industry and Information Technology, in the first half of 2023, the newly installed capacity of energy storage reached 8.63 GWh, equivalent to the total installed capacity of previous years.

    The efficiency and power density of energy storage systems are important factors of product competitiveness, while the size, weight and cost of energy storage systems are closely related to the energy conversion efficiency and directly affect the product cost. Therefore, power semiconductor components play a crucial role.

    “The SiC power solution is an important component for future green energy production and storage applications. Infineon’s cooperation with Sinexcel in the field of energy storage inverters enables energy storage systems to achieve advantages such as high efficiency, small size, and light weight, providing a solid guarantee for high-reliability and high-performance energy storage systems,” said Mr. Yu Daihui, Senior Vice President of Infineon Technologies and Head of Green Industrial Power Division in Greater China.

    “By using Infineon’s SiC devices, Sinexcel’s energy storage products are obviously more compact and flexible, with significantly higher efficiency and lower losses, which reduces the heat dissipation cost of systems, is conducive to the long-term efficient and stable operation of products, and helps end users improve their operational stability and shorten their return on investment cycle.

    This greatly improves the system competitiveness of our products and enhances the trust of clients in our energy storage products and the brand awareness of Sinexcel. We hope that in the future, Infineon will further provide high-performance and high-stability components to help enhance the competitiveness of Sinexcel’s products on the client side,” said Mr.Wei Xiaoliang, Deputy General Manager of Sinexcel.

    With more than 20 years of product development and application experience in the SiC field, Infineon has been working nonstop to develop more sophisticated SiC products. Due to their high power density, Infineon’s 1200 V CoolSiC MOSFETs can reduce losses by 50 percent and provide ~2 percent additional energy without increasing the battery size, which is especially beneficial for high-performance, lightweight and compact energy storage solutions.

    By using Infineon’s 1200 V CoolSiC MOSFETs and EiceDRIVER compact 1200 V single-channel isolated gate drive ICs, Sinexcel’s energy storage converters achieve high power density, minimum electromagnetic radiation and interference, high protection performance and high reliability. This allows a system efficiency of up to 98 percent, which is 1 percent higher than that of traditional solutions, reaching the industry-leading level and better meeting the needs of on-grid and off-grid energy storage applications in both domestic and overseas markets.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies will Provide Sinexcel with Industry-Leading CoolSiC MOSFETs
  • Navitas Semiconductor and SHINRY Collaborate to Accelerate Development of New-Energy Vehicle Power Systems

    Navitas Semiconductor and SHINRY Collaborate to Accelerate Development of New-Energy Vehicle Power Systems

    3 Min Read

    Navitas Semiconductor and SHINRY, global industry leader of on-board power supply and strategic supplier to Honda, Hyundai, BYD, Geely, XPENG, BAIC and many more leading automobile manufacturers, announced the opening of an advanced, joint R&D power laboratory to accelerate the development of New-Energy Vehicle (NEV) power systems enabled by Navitas’ GaNFast™ technology.

    Next-gen gallium nitride (GaN) is replacing legacy silicon power chips due to superior high-frequency and high-efficiency characteristics. GaN delivers faster charging, faster acceleration and longer-range, accelerating market adoption of NEVs and the transition from fossil fuels to clean, renewable energy.

    On January 16th, 2024, Peter (Jingjun) Chen, COO of SHINRY, along with Navitas’ Gene Sheridan, CEO and Navitas’ Charles (Yingjie) Zha, VP and GM plus other senior executives attended the joint lab’s opening ceremony at SHINRY headquarters in Shenzhen.

    The joint lab accelerates development projects, with leading-edge GaN technology combining with innovative system-design skills and engineering talent to enable unprecedented high power density, lightweight, efficient designs that translate to faster charging and extended range, with faster time-to-market.

    The joint lab brings together experienced, highly-professional engineers from Navitas and SHINRY to build efficient, collaborative R&D platforms. Navitas’ own dedicated EV system Design Center, located in Shanghai will provide comprehensive technical support for the joint lab.

    Navitas will not only supply SHINRY with leading-edge, trusted power devices, but will also engage in system-level R&D from the initial stages of product specification and design, through to test platforms and customized packaging solutions. The result will be more efficient, higher power density, more reliable, and cost-effective power systems for NEVs.

    “SHINRY always pursues technological innovation. As early as 2012, SHINRY began applying Silicon Carbide (SiC) MOS, and in 2019, SHINRY initiated research on the application of GaN and has been actively seeking strategic partners.” said Peter (Jingjun) Chen, COO of SHINRY.

    “As an advanced supplier in the field, Navitas will assist in creating more advanced, energy-efficient, and higher-efficiency power system products. I believe the establishment of this joint lab will comprehensively accelerate the design and market launch of SHINRY’s products and further enhance the market competitiveness of SHINRY products.”

    “We are excited to join with SHINRY to establish a new lab for next-gen power semiconductors, assisting SHINRY in creating advanced power systems.” said Gene Sheridan, Navitas’ co-founder & CEO. “SHINRY’s mission to change the way of travel aligns closely with Navitas’ Electrify Our World™ mission. We believe that through our joint efforts, leading GaN technologies will enter the power systems of NEVs for more end-users, contributing to the vigorous growth of the new energy industry.

    Original – Navitas Semiconductor

    Comments Off on Navitas Semiconductor and SHINRY Collaborate to Accelerate Development of New-Energy Vehicle Power Systems