-
MCC Semi announced four new components in advanced P-channel MOSFET lineup. Supporting -100V applications from battery protection to motor drives and high-side switches, MCAC085P10, MCAC055P10, MCU055P10, and MCU085P10 are made for reliability in challenging environments.
With a maximum on-resistance of 55mΩ or 85mΩ, these MOSFETs improve overall system efficiency while reducing power dissipation. Leveraging trench technology and superior thermal performance, these versatile solutions provide engineers with high power density in a compact DFN5060 or DPAK package.
New P-channel MOSFETs are the obvious choice for unmatched performance and effective power management.
Features & Benefits:
- Trench MOSFET Technology: Enhances current capacity and reduces on-resistance
- Low On-Resistance: A maximum RDS(on) of 55mΩ or 85mΩ minimizes power consumption and boosts efficiency
- Low Conduction Losses: Reduce heat generation while improving overall system operation
- Excellent Thermal Performance: Safeguards device from overheating during use in high-temp scenarios
- High Power Density: Available in compact DFN5060 and DPAK package options
Original – Micro Commercial Components
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG3 Min Read
SemiQ Inc. announced a family of 1700 V SiC MOSFETs designed to meet the needs of medium-voltage high power conversion applications, such as photovoltaic and wind inverters, energy storage, EV and road-side charging, uninterruptable power supplies, and induction heating/welding.
The high-speed QSiC™ 1700 V switching planar D-MOSFETs enable more compact system designs at large scale, with higher power densities and lower system costs. They feature a reliable body diode, capable of operation at up to 175oC, with all components tested to beyond 1900 V, and UIL avalanche tested to 600 mJ.
The QSiC 1700 V devices are available in both a bare die form (GP2T030A170X), and as a 4-pin TO-247-4L-packaged discrete (GP2T030A170H) with drain, source, driver source and gate pins. Both are also available in an AEC-Q101 automotive qualified version (AS2T030A170X and AS2T030A170H).
The MOSFETs deliver low switching and conduction losses, low capacitance and feature a rugged gate oxide for long-term reliability, with 100 percent of components undergoing wafer-level burn in (WLBI) to screen out potentially weak oxide devices.
SemiQ has also announced a series of three modules as part of the family to simplify system design, this includes a standard-footprint 62 mm half-bridge module housed in an S3 package with an AIN insolated baseplate, as well as two SOT-227 packaged power modules.
The QSiC 1700 V series’ bare die MOSFET comes with an aluminum (Al) top side and nickel/silver (Ni/Ag) bottom side. Both it and the TO-247-4L packaged device have a power dissipation of 564 W, with a continuous drain current of 83 A (at 25oC, 61A at 100oC) and a pulsed drain current of 250 A (at 25oC). They also feature a gate threshold voltage of 2.7 V (at 25oC, 2.1 V at 125oC), an RDSON of 31 mΩ (at 25oC, 57 mΩ at 125oC), a low (10n A) gate source leakage current and a fast reverse recovery time (tRR) of 17 ns. The TO-247-4L package has a junction to case thermal resistance of 0.27oC per watt.
The two 4-pin power modules are housed in a 38.0 x 24.8 x 11.7 mm SOT-227 design and deliver an increased power dissipation of 652 W with an increased continuous drain current of 123 A (at 25oC – GCMX015A170S1E1) and 88 A (at 25oC GCMX030A170S1-E1). In addition to low switching losses, both modules have a low junction-to-case thermal resistance of 0.19oC and 0.36oC per watt and feature an easy-mount design for direct mounting of the isolated package to a heatsink.
The half-bridge module is housed in a 61.4 x 106.4 x 30.9 mm 9-pin S3 package and delivers a power dissipation of 2113 W with a continuous drain current of 397 A and a pulsed drain current of 700 A. In addition to low switching losses, the GCMX005A170S3B1-N module has a junction to case thermal resistance of 0.06oC per watt.
Original – SemiQ
-
LATEST NEWS / PRODUCT & TECHNOLOGY2 Min Read
MCC Semi introduced the first high-voltage MOSFET with Kelvin source pin in the compact DFN8080A package. Designed to help engineers balance costs and performance, 600V MSJL120N60FH leverages superjunction technology and an integrated FRED body diode to facilitate high-speed switching and recovery.
Its low gate charge and RDS(on) of only 100Ω (typ.) significantly improve switching speeds and reduce losses in a range of demanding applications. Featuring junction-to-case thermal resistance of 0.47K/W, this MOSFET assures reliable operation in high-temp environments, making it an intelligent choice for motor drives, solar inverters, industrial controllers, and power supplies.
With a height of less than 1mm, its low-profile DFN8080A package is well-suited for high-frequency applications where space is limited, and performance is mission-critical.
For engineers looking to boost efficiency and minimize losses, MSJL120N60FH boasts the perfect combination of features for high-voltage, space-constrained scenarios.
Features & Benefits:
- Superjunction technology: Enhances efficiency by reducing on-state resistance.
- Low on-resistance: Minimizes power dissipation at 100mΩ (typ.).
- Low conduction losses: Improves overall system efficiency.
- Low gate charge: Facilitates increased switching speeds.
- Kelvin source pin: Dramatically reduces switching losses while enhancing efficiency.
- Excellent thermal resistance: Junction-to-case thermal resistance of 0.47K/W ensures stable operation amid demanding conditions.
- Integrated FRED body diode: Reduces reverse recovery time for improved switching.
- High-speed switching: Optimal for high-frequency applications.
- Compact package size: DFN8080A package with a low-profile height of less than 1mm, perfect for space-constrained designs.
Original – Micro Commercial Components
-
LATEST NEWS / PRODUCT & TECHNOLOGY2 Min Read
Renesas Electronics Corporation introduced new 100V high-power N-Channel MOSFETs that deliver industry-leading high-current switching performance for applications such as motor control, battery management systems, power management and charging. End products include electric vehicles, e-bikes, charging stations, power tools, data centers, uninterruptable power supplies (UPS) and more.
Renesas has developed a new MOSFET wafer manufacturing process (REXFET-1) that enables the new devices to drastically reduce on-resistance (the resistance between the drain and source when the MOSFET is on) by 30 percent. The lower on-resistance contributes to much lower power loss in customer designs.
The REXFET-1 process also enables the new MOSFETs to offer a 10 percent reduction in Qg characteristics (the amount of charge needed to apply voltage to a gate), and a 40 percent reduction in Qgd (the amount of charge that needs to be injected into the gate during the “Miller Plateau” phase).
In addition to superior electrical characteristics, Renesas’ new RBA300N10EANS and RBA300N10EHPF MOSFETs are available in industry-standard TOLL and TOLG packages that are pin-compatible with devices from other manufacturers, and 50 percent smaller than traditional TO-263 packages. The TOLL package also offers wettable flanks for optical inspection.
“Renesas has been a leader in the MOSFET market for many years,” said Avi Kashyap, Vice President of Discrete Power Solutions BU at Renesas. “As we apply our manufacturing muscle to this market, we can provide customers with superior technical products, as well as assurance of supply from multiple high-volume facilities.”
Renesas has combined the new MOSFETs with numerous compatible devices from its portfolio to offer a wide array of Winning Combinations, including among others, 48V Mobility Platform and 3-in-1 Electric Vehicle Unit: Inverter, Onboard Charger, DC/DC Converter. These designs are technically vetted system architectures from mutually compatible devices that work together seamlessly to bring an optimized, low-risk design for faster time to market.
Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly. They can be found at renesas.com/win.
Original – Renesas Electronics