IGBT Tag Archive

  • Infineon Technologies Unveils Next-Gen EDT3 and RC-IGBT Chips to Power High-Voltage EV Drivetrains with Greater Efficiency and Range

    Infineon Technologies Unveils Next-Gen EDT3 and RC-IGBT Chips to Power High-Voltage EV Drivetrains with Greater Efficiency and Range

    4 Min Read

    The market for electric vehicles continues to gather pace with a strong volume growth of both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). The share of electric vehicles produced is expected to see double-digit growth by 2030 with a share of around 45 percent compared to 20 percent in 2024. Infineon Technologies AG is responding to the growing demand for high-voltage automotive IGBT chips by launching a new generation of products. Among these offerings are the EDT3 (Electric Drive Train, 3 rd generation) chips, designed for 400 V and 800 V systems, and the RC-IGBT chips, tailored specifically for 800 V systems. These devices enhance the performance of electric drivetrain systems, making them particularly suitable for automotive applications.

    The EDT3 and RC-IGBT bare dies have been engineered to deliver high-quality and reliable performance, empowering customers to create custom power modules. The new generation EDT3 represents a significant advancement over the EDT2, achieving up to 20 percent lower total losses at high loads while maintaining efficiency at low loads. This achievement is due to optimizations that minimize chip losses and increase the maximum junction temperature, balancing high-load performance and low-load efficiency. As a result, electric vehicles using EDT3 chips achieve an extended range and reduce energy consumption, providing a more sustainable and cost-effective driving experience.

    “Infineon, as a leading provider of IGBT technology, is committed to delivering outstanding performance and reliability”, says Robert Hermann, Vice President for Automotive High Voltage Chips and Discretes at Infineon Technologies. “Leveraging our steadfast dedication to innovation and decarbonization, our EDT3 solution enables our customers to attain ideal results in their applications.”

    The EDT3 chipsets, which are available in 750 V and 1200 V classes, deliver high output current, making them well-suited for main inverter applications in a diverse range of electric vehicles, including battery electric vehicles, plug-in hybrid electric vehicles, and range-extended electric vehicles (REEVs). Their reduced chip size and optimized design facilitate the creation of smaller modules, consequently leading to lower overall system costs. Moreover, with a maximum virtual junction temperature of 185°C and a maximum collector-emitter voltage rating of up to 750 V and 1200 V, these devices are well-suited for high-performance applications, enabling automakers to design more efficient and reliable powertrains that can help extend driving range and reduce emissions.

    “Infineon, as Leadrive’s primary IGBT chip supplier and partner, consistently provides us with innovative solutions that deliver system-level benefits,” said Dr. Ing. Jie Shen, Founder and General Manager of Leadrive. “The latest EDT3 chips have optimized losses and loss distribution, support higher operating temperatures, and offer multiple metallization options. These features not only reduce the silicon area per ampere, but also accelerate the adoption of advanced packaging technologies.”

    The 1200 V RC-IGBT elevates performance by integrating IGBT and diode functions on a single die, delivering an even higher current density compared to separate IGBT and diode chipset solutions. This advancement translates into a system cost benefit, attributed to the increased current density, scalable chip size, and reduced assembly effort.

    Infineon’s latest EDT3 IGBT chip technology is now integrated into the HybridPACK™ Drive G2 automotive power module, delivering enhanced performance and capabilities across the module portfolio. This module offers a power range of up to 250 kW within the 750 V and 1200 V classes, enhanced ease of use, and new features such as an integration option for next-generation phase current sensors and on-chip temperature sensing, contributing to system cost improvements.

    All chip devices are offered with customized chip layouts, including on-chip temperature and current sensors. Additionally, metallization options for sintering, soldering and bonding are available on request.  

    The new EDT3 and RC-IGBT devices are already available for sampling. Further information is available at www.infineon.com/edt3

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Unveils Next-Gen EDT3 and RC-IGBT Chips to Power High-Voltage EV Drivetrains with Greater Efficiency and Range
  • Mitsubishi Electric to Ship Samples of New HVIGBT Module for Enhanced Industrial Inverters

    Mitsubishi Electric to Ship Samples of New HVIGBT Module for Enhanced Industrial Inverters

    2 Min Read

    Mitsubishi Electric Corporation will begin shipping samples of its new XB Series high-voltage insulated-gate bipolar transistor (HVIGBT) module, a 3.3k-volt, 1500A high-capacity power semiconductor for large industrial equipment such as railway vehicles, on May 1.

    By adopting proprietary diode and insulated gate bipolar transistor (IGBT) elements, as well as a unique chip termination structure, the module’s improved moisture resistance will help to improve the efficiency and reliability of inverters for large industrial equipment operating in diverse environments. Mitsubishi Electric will exhibit the XB Series HVIGBT module at Power Conversion Intelligent Motion (PCIM) Expo & Conference 2025 in Nuremberg, Germany from May 6 to 8.

    The new 3.3kV/1500A XB Series HVIGBT module uses IGBT elements incorporating Mitsubishi Electric’s proprietary relaxed field of cathode (RFC) diode and carrier-stored trench-gate bipolar transistor (CSTBT) structure. In particular, the module reduces total switching loss by approximately 15% compared to previous models, contributing to higher efficiency in inverters. It also expands tolerance in the reverse-recovery safe-operating area (RRSOA) by about 25% compared to previous models, further enhancing inverter reliability.

    In addition, by using a new electric field relaxation structure and a surface charge control structure in the chip’s termination area, Mitsubishi Electric has reduced the area’s size by about 30% while achieving about 20 times greater moisture resistance than existing products, contributing to more stable operation of inverters used in high-humidity environments. By further improving the efficiency and reliability of inverters for large industrial equipment operating in various environments, the module is expected to contribute to efforts to achieve carbon neutrality.

    Original – Mitsubishi Electric

    Comments Off on Mitsubishi Electric to Ship Samples of New HVIGBT Module for Enhanced Industrial Inverters
  • Infineon Technologies Introduces TRENCHSTOP™ H7 IGBTs in DTO247 Package

    Infineon Technologies Introduces TRENCHSTOP™ 7 H7 IGBTs in DTO247 Package

    2 Min Read

    Infineon Technologies AG is developing TRENCHSTOP™ 7 H7 IGBTs in the new DTO247 package, which has the size of two TO247 packages. With a nominal current rating of up to 350 A, they will be the most powerful discrete IGBTs on the market. The new devices are ideal for solar inverters, uninterruptible power supplies (UPS) and energy storage systems (ESS).

    The DTO247 with a single high-current IGBT can replace multiple lower-current IGBTs in standard TO247 packages that are typically connected in parallel. This enables high power density and bridges the gap between TO247-based designs and module architectures. Moreover, the ability to mix and match DTO247-based and standard TO247-based architectures within the same system offers a high degree of flexibility and customization. Integrating DTO247 into the existing TO247 portfolio simplifies the development of cost-effective, scalable architectures.

    This reduces design complexity, shortens development time and lowers parallelization effort while improving performance, reliability, and system cost-effectiveness. The portfolio will include H7 IGBTs in 1200 V and 750 V versions, with current ratings of 200 A, 250 A, 300 A, and 350 A. Designed for high-current applications, these devices feature 2-mm-wide leads for optimal conduction, along with 7 mm pin-to-pin clearance and 10 mm creepage distance for enhanced safety and reliability. Additionally, an integrated Kelvin emitter pin provides faster and more efficient switching performance.

    Infineon intends to continuously expand its DTO247 portfolio, with plans to include CoolSiC™ MOSFETs in a half-bridge configuration. These devices target to be pin-to-pin compatible with similar products on the market.

    First engineering samples of the 200 A and 350 A variants of the TRENCHSTOP™ 7 H7 IGBTs in the DTO247 package are available now. Volume production is scheduled for mid-2026.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Introduces TRENCHSTOP™ 7 H7 IGBTs in DTO247 Package
  • Magnachip Semiconductor Introduced Two New Gen6 650V IGBTs

    Magnachip Semiconductor Introduced Two New Gen6 650V IGBTs

    2 Min Read

    Magnachip Semiconductor Corporation announced the launch of two new 6th-generation (Gen6) 650V Insulated Gate Bipolar Transistors (IGBTs), specifically designed for solar inverters.

    The newly introduced Gen6 IGBTs, incorporating polyimide insulation layers, demonstrate outstanding performance by passing high-voltage, high-humidity and high-temperature reverse bias (HV-H3TRB) tests. These products offer dependable reliability in industrial equipment operating under extreme conditions, including elevated temperatures and humidity.

    Additionally, integrated fast recovery anti-parallel diodes ensure swift removal of residual current, reducing switching losses in applications while supporting an operating temperature range of up to 175°C.

    Of the two new products, the MBQ40T65S6FHTH features exceptional conduction loss reduction. Compared to the previous generation, this IGBT decreases conduction loss by approximately 25% and boosts system efficiency by about 15% in 15kW solar inverters.

    The MBQ40T65S6FSTH is engineered to significantly reduce switching loss. It cuts switching loss by 15% and conduction loss by approximately 8% compared to its predecessor, enhancing system efficiency by about 11% in 3kW solar inverters.

    With these performance upgrades, the new IGBTs are suitable for applications that demand high reliability and efficiency, such as solar inverters, industrial motor drives, power supply units and uninterruptible power supplies.

    According to market research firm Omdia, the discrete IGBT market in the renewable energy sector is expected to grow at a compound annual growth rate of 19% from 2025 to 2028.

    “In the second half of this year, we plan to introduce a broader range of Gen6 650V IGBT products with current ratings from 5A to 75A, as part of our strategy to significantly expand our pipeline of new-generation Power products,” said YJ Kim, CEO of Magnachip. “We have a proven track record in Power with nearly 1,000 chip designs and the manufacture and shipment of more than 23 billion units since we entered the Power business in 2007. Moving forward, we will continue to strengthen our IGBT product family to drive innovation in renewable energy, automotive, industrial and AI applications.”

    Original – Magnachip Semiconductor

    Comments Off on Magnachip Semiconductor Introduced Two New Gen6 650V IGBTs
  • Vincotech Introduced flow E3BP Housing Enhancing Thermal Performance and Power Density

    Vincotech Introduced flow E3BP Housing Enhancing Thermal Performance and Power Density

    2 Min Read

    Vincotech announced the release of flow E3BP, an advancement of the company’s widely adopted flow 2 and flow E3 housing. Engineered to meet the increasingly challenging requirements for next-gen systems, the flow E3BP is the next step up the evolutionary ladder in power module technology across applications.

    Designed to boost thermal performance and maximize power density, this advanced housing is the go-to option for high-power systems and next-generation applications. Featuring a specially treated surface, its convex baseplate provides a superior thermal contact to better disperse heat and handle more power with a smaller footprint.

    The module’s CTI600 housing material holds up well to higher system voltages. Its isolation walls increase creepage and clearance distances. Pre-applied thermal interface material is optionally available, as are Press-fit pins. Rolling efficiency, reliability, and innovation into one exceptionally useful housing, the new flow E3BP meets demand for faster time to market, higher power ratings, and greater power density. An excellent fit for many different applications, it marks another stride towards a more sustainable future.

    Developed with the increasingly challenging demands of renewable energy systems in mind, the flow E3BP is a remarkably efficient power module. Among others, it enables customers to design 350+ kW utility string PV inverters with just a single housing per phase, cutting 30% of the cost for a dual-module solution. It also serves to reduce the heatsink area by as much as 34% compared to flow E3, thereby increasing power density to 51%.

    Chosen for its low inductivity, the new flow E3BP figures prominently in solar and ESS inverters for the utility and commercial segments. Today’s flow E3BP housing meets tomorrow’s 2000 V systems’ high voltage requirements, and the company aims to extend this product portfolio to address further applications such as motion control, industrial drives, and EV charging stations.

    Determined to enable customers to bring their ideas to life, Vincotech continues to develop its range of power module housings, which now encompasses 24 options rated from less than 10 kW up to MW. The flow 2, flow S3, and flow E3 housings see wide use in solar and ESS applications. The latest addition to the line, the leading-edge flow E3BP, supports beyond 350 kW and pushes the envelope for PV and ESS solutions.

    Original – Vincotech

    Comments Off on Vincotech Introduced flow E3BP Housing Enhancing Thermal Performance and Power Density
  • Mitsubishi Electric to Ship Samples of S1-Series HVIGBT Module for High-Power Inverter Systems

    Mitsubishi Electric to Ship Samples of S1-Series HVIGBT Module for High-Power Inverter Systems

    2 Min Read

    Mitsubishi Electric Corporation announced that it will begin shipping samples of two new S1-Series High Voltage Insulated Gate Bipolar Transistor (HVIGBT) modules, both rated at 1.7kV, for large industrial equipment such as railcars and DC power transmitters from December 26. Thanks to proprietary Insulated Gate Bipolar Transistor (IGBT) devices and insulation structures, the new modules offer excellent reliability and low power loss and thermal resistance, which are expected to increase the reliability and efficiency of inverters in large industrial equipment.

    Mitsubishi Electric’s 1.7kV HVIGBT modules, first released in 1997 and highly regarded for their excellent performance and high reliability, have been widely adopted for inverters in power systems.
    The new S1-Series modules incorporate Mitsubishi Electric’s proprietary Relaxed Field of Cathode (RFC) diode, which increases the Reverse Recovery Safe Operating Area (RRSOA) by 2.2 times compared to previous models for improved inverter reliability. In addition, the use of an IGBT element with a Carrier Stored Trench Gate Bipolar Transistor (CSTBT) structure helps reduce both power loss and thermal resistance for more efficient inverters.

    Furthermore, Mitsubishi Electric’s proprietary insulation structure increases the insulation voltage resistance to 6.0kVrms, 1.5 times that of previous products, resulting in more flexible insulation designs for compatibility with a wide range of inverter types.

    Original – Mitsubishi Electric

    Comments Off on Mitsubishi Electric to Ship Samples of S1-Series HVIGBT Module for High-Power Inverter Systems
  • Microchip Technology Released IGBT 7 Portfolio

    Microchip Technology Released IGBT 7 Portfolio

    2 Min Read

    Power components are evolving to meet the increasing demands for higher efficiency, smaller size and greater performance in power electronic systems. To provide system designers with a wide range of power solutions, Microchip Technology announced its portfolio of IGBT 7 devices offered in different packages, multiple topologies, and current and voltage ranges.

    Featuring increased power capability, lower power losses and compact device sizes, this new portfolio is designed to meet high-growth market segments such as sustainability, E-Mobility and data centers. These high-performance IGBT 7 devices are key building blocks for power applications in solar inverters, hydrogen ecosystems, commercial and agricultural vehicles and More Electric Aircraft (MEA).

    Designers can select a suitable power solution based on their requirements. The IGBT 7 devices are offered in standard D3 and D4 62 mm packages, as well as SP6C, SP1F and SP6LI packages. Many configurations are available in the following topologies: three-level Neutral-Point Clamped (NPC), three-phase bridge, boost chopper, buck chopper, dual-common source, full-bridge, phase leg, single switch and T-type. Devices are available with voltages ranging from 1200V to 1700V and current ranging from 50A to 900A.

    “The versatile IGBT 7 portfolio combines ease of use and cost efficiency with higher power density and reliability, offering our customers maximum flexibility. These products are designed for general industrial applications as well as specialized aerospace and defense applications,” said Leon Gross, corporate vice president of Microchip’s discrete product group. “Additionally, our power solutions can be integrated with Microchip’s broad range of FPGAs, microcontrollers (MCUs), microprocessors (MPUs), dsPiC® Digital Signal Controllers (DSCs) and analog devices to provide a comprehensive system solution from one supplier.”

    The lower on-state IGBT voltage (Vce), improved antiparallel diode (lower Vf) and increased current capability can enable lower power losses, higher power density and higher system efficiency. The lower-inductance packages, combined with the higher overload capability at Tvj −175°C, make these devices excellent options for creating rugged and high-reliability aviation and defense applications—such as propulsion, actuation and power distribution—at a lower system cost.

    For motor control applications where enhanced controllability of dv/dt is important, the IGBT 7 devices are designed to offer freewheeling softness for efficient, smooth and optimized driving of switches. These high-performance devices also aim to improve system reliability, reduce EMI and minimize voltage spikes.

    Original – Microchip Technology

    Comments Off on Microchip Technology Released IGBT 7 Portfolio
  • ROHM Developed Automotive-Grade AEC-Q101 Qualified 4th Generation 1200V IGBTs

    ROHM Developed Automotive-Grade AEC-Q101 Qualified 4th Generation 1200V IGBTs

    3 Min Read

    ROHM has developed automotive-grade AEC-Q101 qualified 4th Generation 1200V IGBTs that combine class-leading low loss characteristics with high short-circuit resistance. This makes the devices ideal for vehicle electric compressors and HV heaters as well as industrial inverters.

    The current lineup includes RGA80TRX2HR / RGA80TRX2EHR / RGA80TSX2HR / RGA80TSX2EHR – in two discrete package types (TO-247-4L and TO-247N), along with 11 bare chip variants – SG84xxWN – with plans to further expand the lineup in the future.

    The increasing use of higher voltages in automotive systems and industrial equipment has led to a growing demand for power devices capable of handling high voltages in applications such as vehicle electric compressors, HV heaters, and inverters for industrial equipment.

    At the same time, there is a strong push for high efficiency power devices to improve energy conservation, simplified cooling mechanisms, and smaller form factors for a decarbonized society. Automotive electrical components must also comply with automotive reliability standards, while power devices for inverter and heater circuits are required to provide current interruption capabilities during short circuits, necessitating high short-circuit tolerance.

    In response, ROHM redesigned the device structure and adopted an appropriate package to develop new 4th Generation IGBTs suitable for high voltage by delivering industry-low loss characteristics with superior short-circuit tolerance.

    These devices achieve an industry-leading short-circuit withstand time of 10µs (Tj=25°C) together with low switching and conduction losses while maintaining a high withstand voltage of 1200V and meeting automotive standards by reviewing the device structure, including the peripheral design. At the same time, the new TO-247-4L package products, which feature 4 terminals, can accommodate an effective voltage of 1100V in a ‘Pollution Degree 2 environment’ by ensuring adequate creepage distance between pins. This enables support for higher voltage applications than conventional products.

    Implementing creepage distance measures on the device side alleviates the design burden for manufacturers. On top, the TO-247-4L package achieves high-speed switching by including a Kelvin emitter terminal, resulting in even lower losses. In fact, when comparing the efficiency of the new TO-247-4L packages with conventional and standard products in a 3-phase inverter, loss is reduced by about 24% compared to standard products and by 35% over conventional products – contributing to higher efficiency in drive applications.

    ROHM will continue to expand its lineup of high-performance IGBTs that contribute to greater miniaturization and high efficiency drive in automotive and industrial equipment applications.

    Original – ROHM

    Comments Off on ROHM Developed Automotive-Grade AEC-Q101 Qualified 4th Generation 1200V IGBTs
  • STMicroelectronics Released an Advanced Galvanically Isolated Gate Drivers for IGBTs and SiC MOSFETs

    STMicroelectronics Released an Advanced Galvanically Isolated Gate Drivers for IGBTs and SiC MOSFETs

    2 Min Read

    STMicroelectronics’ STGAP3S family of gate drivers for silicon-carbide (SiC) and IGBT power switches combines ST’s latest robust galvanic isolation technology with optimized desaturation protection and flexible Miller-clamp architecture.

    Featuring reinforced capacitive galvanic isolation between the gate-driving channel and the low-voltage control and interface circuitry, the STGAP3S withstands 9.6kV transient isolation voltage (VIOTM) with 200V/ns common-mode transient immunity (CMTI). With its state-of-the-art isolation, the STGAP3S enhances reliability in motor drives for industrial applications such as air conditioning, factory automation, and home appliances. The new drivers are also used in power and energy applications including charging stations, energy storage systems, power-factor correction (PFC), DC/DC converters, and solar inverters.

    The STGAP3S product family includes different options with 10A and 6A current capability, each of them available with differentiated Under Voltage Lock-Out (UVLO) and desaturation intervention thresholds. This helps designers select the best device to match the performance of their chosen SiC MOSFET or IGBT power switches.

    The Desaturation protection implements an overload and short-circuit protection for the external power switch providing the possibility to adjust the turn-off strategy using an external resistor to maximize the protection turn-off speed while avoiding excessive overvoltage spikes. The undervoltage-lockout protection prevents turn-on with insufficient drive voltage.

    The driver’s integrated Miller Clamp architecture provides a pre-driver for an external N-channel MOSFET. Designers can thus leverage flexibility to select a suitable intervention speed that prevents induced turn-on and avoids cross conduction.

    The available device variants allow a choice of 10A sink/source and 6A sink/source drive-current capability for optimum performance with the chosen power switch with desaturation-detection and UVLO thresholds optimized for IGBT or SiC technology. The fault conditions of desaturation, UVLO and overtemperature protection are notified with two dedicated open drain diagnostic pins.

    Original – STMicroelectronics

    Comments Off on STMicroelectronics Released an Advanced Galvanically Isolated Gate Drivers for IGBTs and SiC MOSFETs
  • Vishay Intertechnology Introduced New IGBT and MOSFET Drivers

    Vishay Intertechnology Introduced New IGBT and MOSFET Drivers

    2 Min Read

    Vishay Intertechnology, Inc. introduced two new IGBT and MOSFET drivers in the compact, high isolation stretched SO-6 package. Delivering high peak output currents of 3 A and 4 A, respectively, the Vishay Semiconductors VOFD341A and VOFD343A offer high operating temperatures to +125 °C and low propagation delay of 200 ns maximum.

    Consisting of an AlGaAs LED optically coupled to an integrated circuit with a power output stage, the optocouplers are intended for solar inverters and microinverters; AC and brushless DC industrial motor control inverters; and inverter stages for AC/DC conversion in UPS. The devices are ideally suited for directly driving IGBTs with ratings up to 1200 V / 100 A.

    The high operating temperature of the VOFD341A and VOFD343A provides a higher temperature safety margin for more compact designs, while their high peak output current allows for faster switching by eliminating the need for an additional driver stage. The devices’ low propagation delay minimizes switching losses, while facilitating more precise PWM regulation.

    The optocouplers’ high isolation package enables high working voltages up to 1.140 V, which allows for high voltage inverter stages, while still maintaining enough voltage safety margin. The RoHS-compliant devices offer high noise immunity of 50 kV/µs, which prevents fail functions in fast switching power stages.

    Original – Vishay Intertechnology

    Comments Off on Vishay Intertechnology Introduced New IGBT and MOSFET Drivers