-
AIXTRON SE has officially started the construction of the new innovation center at its headquarters in Herzogenrath, Germany. The leading provider of deposition equipment to the semiconductor industry is investing around EUR 100 million in 1000m2 of clean room with additional space for the required metrology equipment.
This research facility will feature the latest technologies available in the industry. The first systems are scheduled to move into the new building during the second half of 2024. The official handover is planned for early 2025.
This milestone in the company’s successful history was marked with a symbolic ground-breaking ceremony attended by representatives from politics, science and research as well as key suppliers of the company. The framework for this significant step was a celebration in honor of AIXTRON’s 40th year since its founding: The company started in December 1983 as a spin-off from RWTH Aachen University.
Since that time, AIXTRON has always been at the forefront of innovation and new, groundbreaking semiconductor technologies. The new innovation center continues on this path and forms an important foundation for the company’s continued successful growth.
“We have just completely renewed our portfolio with our successful G10 product family. The demand from our customers is already very high, so we are in the middle of a volume ramp. And we are now also starting to work on the next generation of innovative technical solutions. With this, we will successfully drive forward the electrification of the world with the megatrends of digitalization, electromobility, and energy efficiency. The new innovation center provides us with essential capacities for all of this,” says Dr. Felix Grawert, CEO of AIXTRON SE.
The cleanroom area of the innovation center will be of class ISO 6, expandable up to ISO 4. The new complex, known in the industry as “fab”, will be one of the most compact and complex semiconductor fabs in the world: the area has two sub-levels. The first sub-level accommodates, e.g., the pump filter cabinets of the systems while the facility level houses all supporting processes and systems for the entire infrastructure.
This type of space utilization increases cleanroom efficiency by a factor of up to three compared to the previously used cleanroom areas.
Original – AIXTRON
-
Intelligent management of power loads and power sources can make existing power networks more robust in order to handle the growing share of green energy. At the conclusion of the PROGRESSUS research project 22 project partners presented the project’s results in Bari, Italy.
Among other things, a solution was introduced which would make it possible to operate ten to fifteen times more electric car charging stations on a single network connection. In addition, a strategy for tracking electricity from generation all the way to consumption was presented. PROGRESSUS focused on three central topics: Efficient energy conversion, intelligent electricity management and secure network monitoring.
The Electronic Components and Systems for European Leadership Joint Undertaking (ECSEL-JU) and the governments of Germany, Italy, the Netherlands, Slovakia and Spain supported PROGRESSUS with almost 20 million euros. A total of 22 project partners from industry and research participated beginning on 1 April 2020; the project was led by Infineon Technologies AG.
“Decarbonization and electrification go hand in hand. Our power grids will have to perform better and become more stable if they are to handle the growing power volumes and fluctuations in the supply and demand of electricity. This means we need new solutions,” said Thomas Zollver, Senior Vice President Technology & Innovation of the Infineon Connected Secure Systems division.
“The joint research project PROGRESSUS has succeeded in developing a significant number of technologies that can make our existing networks more resilient. The project is thus making an important contribution to freeing our modern lives from fossil energy sources and protecting our climate for future generations.”
The project developed highly efficient electric power converters what minimizes loss while integrating battery storage systems and renewable energy sources such as photovoltaics: The converters integrate ultra-fast sensors and SiC MOSFETs which can be switched at considerably higher speeds.
This makes them suitable for use in new, innovative charge management systems for battery-electric vehicles which reduce the peak power consumption at the site level by as much as 90 percent, without significantly longer charging times. As an alternative the intelligent charging algorithm can support ten to fifteen times more charging stations on the same network connection.
Hardware-based security solutions provide the best possible protection of the communications and data in the power network’s critical infrastructure against manipulation. These solutions also serve as a basis for tracking the energy provided from the point of generation all the way to its consumption. This makes it possible for consumers to prove they are using green electricity.
Joint energy management of multiple buildings can also help relieve power networks. PROGRESSUS project partners have simulated this kind of energy management system based on real data from 16 buildings with photovoltaic systems and energy storage systems. The result: This kind of joint energy management could reduce electricity peak demands present in the public network by an average up to 80 percent, without a negative impact on customers’ needs. This value for the case investigated depends on the season, weather conditions and the configuration of the PV and storage systems.
The findings of the PROGRESSUS project constitute an important contribution to the new products and services which support the achievement of European climate targets.
The 22 partners of the PROGRESSUS research project
- Ceus UG (DE)
- Centre Tecnològic de Telecomunicacions de Catalunya (ES)
- devolo AG (DE)
- ElaadNL (NL)
- Enel X Way S.r.l. (IT)
- Friedrich-Alexander-Universität Erlangen-Nürnberg (DE)
- Greenflux Assets BV (NL)
- Heliox (NL)
- Hybrid Energy Storage Solutions S.L. (ES)
- Infineon Technologies AG (DE)
- Iquadrat Informatica S.L. (ES)
- Consorzio Nazionale Interuniversitario per la Nanoelettronica (IT)
- Acondicionamiento Tarrasense (LEITAT) (ES)
- Mixed Mode GmbH (new company name: Ingenics Digital GmbH) (DE)
- Politecnico di Bari (IT)
- R-DAS, s.r.o. (SK)
- STMicroelectronics S.r.l. (IT)
- Slovak University of Technology in Bratislava (SK)
- TH Köln (DE)
- Delft University of Technology (NL)
- Eindhoven University of Technology (NL)
- University of Messina (IT)
Original – Infineon Technologies